Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ import tempfile
|
|
23 |
# API Key
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
-
# LLM
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
@@ -37,45 +37,45 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
40 |
-
# Initialize LLM
|
41 |
llm = ChatGroq(
|
42 |
temperature=0,
|
43 |
model_name="mixtral-8x7b-32768",
|
44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
45 |
)
|
46 |
|
47 |
-
# Streamlit UI
|
48 |
st.title("SQL-RAG Using CrewAI π")
|
49 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
50 |
|
|
|
|
|
|
|
|
|
51 |
# Dataset Input
|
52 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
53 |
-
df = None
|
54 |
-
|
55 |
if input_option == "Use Hugging Face Dataset":
|
56 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
57 |
if st.button("Load Dataset"):
|
58 |
try:
|
59 |
with st.spinner("Loading dataset..."):
|
60 |
dataset = load_dataset(dataset_name, split="train")
|
61 |
-
df = pd.DataFrame(dataset)
|
62 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
63 |
-
st.dataframe(df.head())
|
64 |
except Exception as e:
|
65 |
st.error(f"Error: {e}")
|
66 |
-
|
67 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
68 |
if uploaded_file:
|
69 |
-
df = pd.read_csv(uploaded_file)
|
70 |
st.success("File uploaded successfully!")
|
71 |
-
st.dataframe(df.head())
|
72 |
|
73 |
# SQL-RAG Analysis
|
74 |
-
if df is not None:
|
75 |
temp_dir = tempfile.TemporaryDirectory()
|
76 |
db_path = os.path.join(temp_dir.name, "data.db")
|
77 |
connection = sqlite3.connect(db_path)
|
78 |
-
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
79 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
80 |
|
81 |
@tool("list_tables")
|
@@ -98,7 +98,6 @@ if df is not None:
|
|
98 |
"""Check the validity of a SQL query."""
|
99 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
100 |
|
101 |
-
# Agents
|
102 |
sql_dev = Agent(
|
103 |
role="Senior Database Developer",
|
104 |
goal="Extract data using optimized SQL queries.",
|
@@ -121,7 +120,6 @@ if df is not None:
|
|
121 |
llm=llm,
|
122 |
)
|
123 |
|
124 |
-
# Tasks
|
125 |
extract_data = Task(
|
126 |
description="Extract data based on the query: {query}.",
|
127 |
expected_output="Database results matching the query.",
|
|
|
23 |
# API Key
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
+
# Initialize LLM
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
|
|
40 |
llm = ChatGroq(
|
41 |
temperature=0,
|
42 |
model_name="mixtral-8x7b-32768",
|
43 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
44 |
)
|
45 |
|
|
|
46 |
st.title("SQL-RAG Using CrewAI π")
|
47 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
48 |
|
49 |
+
# Initialize session state for data persistence
|
50 |
+
if "df" not in st.session_state:
|
51 |
+
st.session_state.df = None
|
52 |
+
|
53 |
# Dataset Input
|
54 |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
|
|
|
|
55 |
if input_option == "Use Hugging Face Dataset":
|
56 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
57 |
if st.button("Load Dataset"):
|
58 |
try:
|
59 |
with st.spinner("Loading dataset..."):
|
60 |
dataset = load_dataset(dataset_name, split="train")
|
61 |
+
st.session_state.df = pd.DataFrame(dataset)
|
62 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
63 |
+
st.dataframe(st.session_state.df.head())
|
64 |
except Exception as e:
|
65 |
st.error(f"Error: {e}")
|
66 |
+
elif input_option == "Upload CSV File":
|
67 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
68 |
if uploaded_file:
|
69 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
70 |
st.success("File uploaded successfully!")
|
71 |
+
st.dataframe(st.session_state.df.head())
|
72 |
|
73 |
# SQL-RAG Analysis
|
74 |
+
if st.session_state.df is not None:
|
75 |
temp_dir = tempfile.TemporaryDirectory()
|
76 |
db_path = os.path.join(temp_dir.name, "data.db")
|
77 |
connection = sqlite3.connect(db_path)
|
78 |
+
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
|
79 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
80 |
|
81 |
@tool("list_tables")
|
|
|
98 |
"""Check the validity of a SQL query."""
|
99 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
100 |
|
|
|
101 |
sql_dev = Agent(
|
102 |
role="Senior Database Developer",
|
103 |
goal="Extract data using optimized SQL queries.",
|
|
|
120 |
llm=llm,
|
121 |
)
|
122 |
|
|
|
123 |
extract_data = Task(
|
124 |
description="Extract data based on the query: {query}.",
|
125 |
expected_output="Database results matching the query.",
|