Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -111,7 +111,7 @@ if st.session_state.df is not None:
|
|
111 |
"""Validate the SQL query syntax and structure before execution."""
|
112 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
113 |
|
114 |
-
#
|
115 |
sql_dev = Agent(
|
116 |
role="Senior Database Developer",
|
117 |
goal="Extract data using optimized SQL queries.",
|
@@ -120,7 +120,6 @@ if st.session_state.df is not None:
|
|
120 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
121 |
)
|
122 |
|
123 |
-
# Agent for data analysis
|
124 |
data_analyst = Agent(
|
125 |
role="Senior Data Analyst",
|
126 |
goal="Analyze the data and produce insights.",
|
@@ -128,23 +127,21 @@ if st.session_state.df is not None:
|
|
128 |
llm=llm,
|
129 |
)
|
130 |
|
131 |
-
# Agent for generating the main report (without Conclusion)
|
132 |
report_writer = Agent(
|
133 |
role="Technical Report Writer",
|
134 |
-
goal="
|
135 |
-
backstory="
|
136 |
llm=llm,
|
137 |
)
|
138 |
|
139 |
-
# New Agent for generating ONLY the Conclusion
|
140 |
conclusion_writer = Agent(
|
141 |
role="Conclusion Specialist",
|
142 |
-
goal="Summarize findings into a clear and concise Conclusion
|
143 |
-
backstory="An expert in crafting
|
144 |
llm=llm,
|
145 |
)
|
146 |
|
147 |
-
#
|
148 |
extract_data = Task(
|
149 |
description="Extract data based on the query: {query}.",
|
150 |
expected_output="Database results matching the query.",
|
@@ -153,57 +150,61 @@ if st.session_state.df is not None:
|
|
153 |
|
154 |
analyze_data = Task(
|
155 |
description="Analyze the extracted data for query: {query}.",
|
156 |
-
expected_output="
|
157 |
agent=data_analyst,
|
158 |
context=[extract_data],
|
159 |
)
|
160 |
|
161 |
write_report = Task(
|
162 |
-
description="Write the report with
|
163 |
-
expected_output="Markdown report excluding
|
164 |
agent=report_writer,
|
165 |
context=[analyze_data],
|
166 |
)
|
167 |
|
168 |
write_conclusion = Task(
|
169 |
-
description="
|
170 |
-
expected_output="Markdown-formatted Conclusion section.",
|
171 |
agent=conclusion_writer,
|
172 |
context=[analyze_data],
|
173 |
)
|
174 |
|
175 |
-
#
|
176 |
-
|
177 |
-
agents=[sql_dev, data_analyst, report_writer
|
178 |
-
tasks=[extract_data, analyze_data, write_report
|
179 |
process=Process.sequential,
|
180 |
verbose=True,
|
181 |
)
|
182 |
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
185 |
|
186 |
-
#
|
187 |
with tab1:
|
188 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
189 |
if st.button("Submit Query"):
|
190 |
with st.spinner("Processing query..."):
|
191 |
-
# Step 1: Generate
|
192 |
-
report_inputs = {"query": query + " Provide
|
193 |
-
report_result =
|
194 |
-
|
195 |
-
# Step 2: Generate only the Conclusion
|
196 |
-
conclusion_inputs = {"query": query + " Now, provide only the Conclusion for this analysis."}
|
197 |
-
conclusion_result = crew.kickoff(inputs=conclusion_inputs)
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
|
202 |
|
|
|
203 |
st.markdown("### Analysis Report:")
|
204 |
-
st.markdown(
|
205 |
|
206 |
-
# Step
|
207 |
visualizations = []
|
208 |
|
209 |
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
@@ -221,16 +222,16 @@ if st.session_state.df is not None:
|
|
221 |
title="Salary Distribution by Employment Type")
|
222 |
visualizations.append(fig_employment)
|
223 |
|
224 |
-
# Step
|
225 |
st.markdown("## π Visual Insights")
|
226 |
for fig in visualizations:
|
227 |
st.plotly_chart(fig, use_container_width=True)
|
228 |
|
229 |
-
# Step
|
230 |
st.markdown("## Conclusion")
|
231 |
-
st.markdown(
|
232 |
|
233 |
-
#
|
234 |
with tab2:
|
235 |
st.subheader("π Comprehensive Data Visualizations")
|
236 |
|
|
|
111 |
"""Validate the SQL query syntax and structure before execution."""
|
112 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
113 |
|
114 |
+
# Agents for SQL data extraction and analysis
|
115 |
sql_dev = Agent(
|
116 |
role="Senior Database Developer",
|
117 |
goal="Extract data using optimized SQL queries.",
|
|
|
120 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
121 |
)
|
122 |
|
|
|
123 |
data_analyst = Agent(
|
124 |
role="Senior Data Analyst",
|
125 |
goal="Analyze the data and produce insights.",
|
|
|
127 |
llm=llm,
|
128 |
)
|
129 |
|
|
|
130 |
report_writer = Agent(
|
131 |
role="Technical Report Writer",
|
132 |
+
goal="Write a structured report with Key Insights and Analysis. DO NOT include Introduction or Conclusion.",
|
133 |
+
backstory="Specializes in detailed analytical reports without conclusions.",
|
134 |
llm=llm,
|
135 |
)
|
136 |
|
|
|
137 |
conclusion_writer = Agent(
|
138 |
role="Conclusion Specialist",
|
139 |
+
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
|
140 |
+
backstory="An expert in crafting impactful and clear conclusions.",
|
141 |
llm=llm,
|
142 |
)
|
143 |
|
144 |
+
# Define tasks for report and conclusion
|
145 |
extract_data = Task(
|
146 |
description="Extract data based on the query: {query}.",
|
147 |
expected_output="Database results matching the query.",
|
|
|
150 |
|
151 |
analyze_data = Task(
|
152 |
description="Analyze the extracted data for query: {query}.",
|
153 |
+
expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
|
154 |
agent=data_analyst,
|
155 |
context=[extract_data],
|
156 |
)
|
157 |
|
158 |
write_report = Task(
|
159 |
+
description="Write the analysis report with Key Insights. DO NOT include a Conclusion.",
|
160 |
+
expected_output="Markdown-formatted report excluding Conclusion.",
|
161 |
agent=report_writer,
|
162 |
context=[analyze_data],
|
163 |
)
|
164 |
|
165 |
write_conclusion = Task(
|
166 |
+
description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights.",
|
167 |
+
expected_output="Markdown-formatted concise Conclusion section.",
|
168 |
agent=conclusion_writer,
|
169 |
context=[analyze_data],
|
170 |
)
|
171 |
|
172 |
+
# Separate Crews for report and conclusion
|
173 |
+
crew_report = Crew(
|
174 |
+
agents=[sql_dev, data_analyst, report_writer],
|
175 |
+
tasks=[extract_data, analyze_data, write_report],
|
176 |
process=Process.sequential,
|
177 |
verbose=True,
|
178 |
)
|
179 |
|
180 |
+
crew_conclusion = Crew(
|
181 |
+
agents=[data_analyst, conclusion_writer],
|
182 |
+
tasks=[write_conclusion],
|
183 |
+
process=Process.sequential,
|
184 |
+
verbose=True,
|
185 |
+
)
|
186 |
+
|
187 |
+
# Tabs for Query Results and Visualizations
|
188 |
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
189 |
|
190 |
+
# Query Insights + Visualization
|
191 |
with tab1:
|
192 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
193 |
if st.button("Submit Query"):
|
194 |
with st.spinner("Processing query..."):
|
195 |
+
# Step 1: Generate the analysis report
|
196 |
+
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
|
197 |
+
report_result = crew_report.kickoff(inputs=report_inputs)
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
# Step 2: Generate only the concise conclusion
|
200 |
+
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
201 |
+
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
202 |
|
203 |
+
# Step 3: Display the report
|
204 |
st.markdown("### Analysis Report:")
|
205 |
+
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
206 |
|
207 |
+
# Step 4: Generate Visualizations
|
208 |
visualizations = []
|
209 |
|
210 |
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
|
|
222 |
title="Salary Distribution by Employment Type")
|
223 |
visualizations.append(fig_employment)
|
224 |
|
225 |
+
# Step 5: Insert Visual Insights
|
226 |
st.markdown("## π Visual Insights")
|
227 |
for fig in visualizations:
|
228 |
st.plotly_chart(fig, use_container_width=True)
|
229 |
|
230 |
+
# Step 6: Display Concise Conclusion
|
231 |
st.markdown("## Conclusion")
|
232 |
+
st.markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
233 |
|
234 |
+
# Full Data Visualization Tab
|
235 |
with tab2:
|
236 |
st.subheader("π Comprehensive Data Visualizations")
|
237 |
|