Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#pragma once
#include <iostream>
#include <cstdio>
#include <vector>
#include "cutlass/gemm/thread/mma.h"
#include "../kernel/thread/testbed_kernel.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/trace.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include <cuda.h>
#include <nvrtc.h>
#include "../cutlass/nvrtc/environment.h"
#include <assert.h>
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace nvrtc {
namespace thread {
#define NVRTC_RETURN_IF_ERROR(api) \
do { \
nvrtcResult _result = api; \
if (_result != NVRTC_SUCCESS) { \
CUTLASS_TRACE_HOST("Nvrtc error: " << _result); \
return false; \
} \
} while(0)
inline const char * cuda_source_fmt = R"""(
#include "kernel/thread/contraction.hpp"
using Operator = %s;
extern "C" __global__ void global_entry(__grid_constant__ Operator::Params const params) {
extern __shared__ char smem[];
Operator op;
op(params, smem);
}
)""";
struct TestbedKernel {
static bool compile(std::string const &kernel, std::vector<const char *> const &opts) {
int sz = std::snprintf(nullptr, 0, cuda_source_fmt, kernel.c_str());
std::vector<char> cuda_source(sz + 1);
std::snprintf(&cuda_source[0], cuda_source.size(), cuda_source_fmt, kernel.c_str());
nvrtcProgram program;
NVRTC_RETURN_IF_ERROR(
nvrtcCreateProgram(
&program,
cuda_source.data(),
nullptr,
static_cast<int32_t>(cutlass::nvrtc::kCutlassHeaderCount),
cutlass::nvrtc::kCutlassHeaders,
cutlass::nvrtc::kCutlassHeaderNames)
);
nvrtcResult compile_result =
nvrtcCompileProgram(
program,
static_cast<int32_t>(opts.size()),
opts.data());
size_t log_size;
NVRTC_RETURN_IF_ERROR(
nvrtcGetProgramLogSize(program, &log_size)
);
if (log_size > 1) {
auto log = std::make_unique<char[]>(log_size);
NVRTC_RETURN_IF_ERROR(
nvrtcGetProgramLog(program, log.get())
);
std::cout << log.get() << std::endl;
}
NVRTC_RETURN_IF_ERROR(compile_result);
NVRTC_RETURN_IF_ERROR(
nvrtcDestroyProgram(&program)
);
return true;
}
};
/// Structure to compute the matrix product
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape,
/// Data type of A elements
typename ElementA,
/// Layout of A matrix (concept: MatrixLayout)
typename LayoutA,
/// Data type of B elements
typename ElementB,
/// Layout of B matrix (concept: MatrixLayout)
typename LayoutB,
/// Element type of C matrix
typename ElementC,
/// Layout of C matrix (concept: MatrixLayout)
typename LayoutC
>
struct Testbed {
/// Thread-level matrix multiply-accumulate operator
using Mma = cutlass::gemm::thread::Mma<
Shape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC
>;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
Testbed() {
tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK));
tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
static inline bool check_nvrtc_error(nvrtcResult error) {
if (error != NVRTC_SUCCESS) {
std::cerr << "failed to compile ";
return false;
}
return true;
}
/// Runs the test
bool run(std::string const &gemm_traits) {
//
// initialize device memory
//
cutlass::reference::host::BlockFillSequential(
tensor_A.host_data(),
tensor_A.capacity()
);
cutlass::reference::host::BlockFillSequential(
tensor_B.host_data(),
tensor_B.capacity(),
ElementB(1),
ElementB(2)
);
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
#if 0
// launch kernel
cutlass::gemm::kernel::testbed_kernel<Mma><<< dim3(1, 1), dim3(1, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data());
#else
// Instantiate gemm_kernel
nvrtcResult result_nvrtc;
nvrtcProgram program;
static char const *src =
"#include \"cutlass/gemm/thread/mma.h\"\n"
"#include \"cutlass/gemm/gemm.h\"\n"
"#include \"cutlass/layout/matrix.h\"\n"
"#include \"unit/nvrtc/kernel/thread/testbed_kernel.h\"\n"
;
std::string type_name;
#if 0
// TODO Ideally we'd use nvrtcGetTypeName to determine the type, but it cannot resolve enum symbol names
// As altername solution we might want to implement to_string<GemmTraits>() to get the traits string.
nvrtcGetTypeName<typename GemmTraits_>(&type_name);
#else
type_name = gemm_traits;
#endif
result_nvrtc = nvrtcCreateProgram(&program,
src,
NULL,
(int)cutlass::nvrtc::kCutlassHeaderCount,
cutlass::nvrtc::kCutlassHeaders,
cutlass::nvrtc::kCutlassHeaderNames);
check_nvrtc_error(result_nvrtc);
std::string gemm_kernel_instantiation =
"test::nvrtc::kernel::thread::testbed_kernel< " + type_name + " >";
nvrtcAddNameExpression(program, gemm_kernel_instantiation.c_str());
const char *opts[] = {"--gpu-architecture=compute_75",
"--std=c++17",
"--include-path=/usr/local/cuda-10.1/include"};
result_nvrtc = nvrtcCompileProgram(program, 3, opts);
if (result_nvrtc != NVRTC_SUCCESS) {
size_t logSize;
nvrtcGetProgramLogSize(program, &logSize);
std::vector<char> log(logSize);
nvrtcGetProgramLog(program, log.data());
std::cout << "Compile log:" << std::endl << log.data() << std::endl;
}
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
// The lowered name is the name of the template instantiation in the generated PTX code.
char const *gemm_kernel_lowered_name;
nvrtcGetLoweredName(program, gemm_kernel_instantiation.c_str(), &gemm_kernel_lowered_name);
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
// Query the size of the genereated PTX so that we can allocate storage and retrieve it afterwards
size_t ptx_size;
result_nvrtc = nvrtcGetPTXSize(program, &ptx_size);
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
std::vector<char> ptx(ptx_size);
result_nvrtc = nvrtcGetPTX(program, ptx.data());
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
// we do not need the nvrtc program anymore
//nvrtcDestroyProgram(&program);
CUmodule module;
CUresult result_cuda;
result_cuda = cuModuleLoadDataEx(&module, ptx.data(), 0, 0, 0);
if (result_cuda != CUDA_SUCCESS) {
assert(0);
}
CUfunction kernel;
result_cuda = cuModuleGetFunction(&kernel, module, gemm_kernel_lowered_name);
if (result_cuda != CUDA_SUCCESS) {
assert(0);
}
void* d_a = (void*)tensor_A.device_data();
void* d_b = (void*)tensor_B.device_data();
void* d_c = (void*)tensor_C.device_data();
void* d_d = (void*)tensor_D_computed.device_data();
void* args[] = { &d_d, &d_a, &d_b, &d_c };
// CUfunction f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void** kernelParams, void** extra
result_cuda = cuLaunchKernel(kernel, 1, 1, 1, 1, 1, 1, 0, 0 /*cudaStreamDefault*/, args, 0);
if (result_cuda != CUDA_SUCCESS) {
assert(0);
} else {
}
#endif
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cout << "CUDA ERROR: " << cudaGetErrorString(result);
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
//tensor_D_reference.fill(tensor_C.host_view());
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
ElementC, LayoutC, ElementC, ElementC> reference_gemm;
reference_gemm(
{Shape::kM, Shape::kN, Shape::kK},
ElementC(1),
tensor_A.host_ref(),
tensor_B.host_ref(),
ElementC(0),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
if(!passed) std::cout
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
std::cout << "passed " << passed << std::endl;
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace nvrtc
} // namespace test