/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #pragma once #include #include #include #include "cutlass/gemm/thread/mma.h" #include "../kernel/thread/testbed_kernel.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/trace.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/gemm.h" #include #include #include "../cutlass/nvrtc/environment.h" #include ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace nvrtc { namespace thread { #define NVRTC_RETURN_IF_ERROR(api) \ do { \ nvrtcResult _result = api; \ if (_result != NVRTC_SUCCESS) { \ CUTLASS_TRACE_HOST("Nvrtc error: " << _result); \ return false; \ } \ } while(0) inline const char * cuda_source_fmt = R"""( #include "kernel/thread/contraction.hpp" using Operator = %s; extern "C" __global__ void global_entry(__grid_constant__ Operator::Params const params) { extern __shared__ char smem[]; Operator op; op(params, smem); } )"""; struct TestbedKernel { static bool compile(std::string const &kernel, std::vector const &opts) { int sz = std::snprintf(nullptr, 0, cuda_source_fmt, kernel.c_str()); std::vector cuda_source(sz + 1); std::snprintf(&cuda_source[0], cuda_source.size(), cuda_source_fmt, kernel.c_str()); nvrtcProgram program; NVRTC_RETURN_IF_ERROR( nvrtcCreateProgram( &program, cuda_source.data(), nullptr, static_cast(cutlass::nvrtc::kCutlassHeaderCount), cutlass::nvrtc::kCutlassHeaders, cutlass::nvrtc::kCutlassHeaderNames) ); nvrtcResult compile_result = nvrtcCompileProgram( program, static_cast(opts.size()), opts.data()); size_t log_size; NVRTC_RETURN_IF_ERROR( nvrtcGetProgramLogSize(program, &log_size) ); if (log_size > 1) { auto log = std::make_unique(log_size); NVRTC_RETURN_IF_ERROR( nvrtcGetProgramLog(program, log.get()) ); std::cout << log.get() << std::endl; } NVRTC_RETURN_IF_ERROR(compile_result); NVRTC_RETURN_IF_ERROR( nvrtcDestroyProgram(&program) ); return true; } }; /// Structure to compute the matrix product template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape, /// Data type of A elements typename ElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA, /// Data type of B elements typename ElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB, /// Element type of C matrix typename ElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC > struct Testbed { /// Thread-level matrix multiply-accumulate operator using Mma = cutlass::gemm::thread::Mma< Shape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC >; // // Data members // cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D_computed; cutlass::HostTensor tensor_D_reference; // // Methods // /// Allocates workspace in device memory Testbed() { tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK)); tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } static inline bool check_nvrtc_error(nvrtcResult error) { if (error != NVRTC_SUCCESS) { std::cerr << "failed to compile "; return false; } return true; } /// Runs the test bool run(std::string const &gemm_traits) { // // initialize device memory // cutlass::reference::host::BlockFillSequential( tensor_A.host_data(), tensor_A.capacity() ); cutlass::reference::host::BlockFillSequential( tensor_B.host_data(), tensor_B.capacity(), ElementB(1), ElementB(2) ); cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); #if 0 // launch kernel cutlass::gemm::kernel::testbed_kernel<<< dim3(1, 1), dim3(1, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); #else // Instantiate gemm_kernel nvrtcResult result_nvrtc; nvrtcProgram program; static char const *src = "#include \"cutlass/gemm/thread/mma.h\"\n" "#include \"cutlass/gemm/gemm.h\"\n" "#include \"cutlass/layout/matrix.h\"\n" "#include \"unit/nvrtc/kernel/thread/testbed_kernel.h\"\n" ; std::string type_name; #if 0 // TODO Ideally we'd use nvrtcGetTypeName to determine the type, but it cannot resolve enum symbol names // As altername solution we might want to implement to_string() to get the traits string. nvrtcGetTypeName(&type_name); #else type_name = gemm_traits; #endif result_nvrtc = nvrtcCreateProgram(&program, src, NULL, (int)cutlass::nvrtc::kCutlassHeaderCount, cutlass::nvrtc::kCutlassHeaders, cutlass::nvrtc::kCutlassHeaderNames); check_nvrtc_error(result_nvrtc); std::string gemm_kernel_instantiation = "test::nvrtc::kernel::thread::testbed_kernel< " + type_name + " >"; nvrtcAddNameExpression(program, gemm_kernel_instantiation.c_str()); const char *opts[] = {"--gpu-architecture=compute_75", "--std=c++17", "--include-path=/usr/local/cuda-10.1/include"}; result_nvrtc = nvrtcCompileProgram(program, 3, opts); if (result_nvrtc != NVRTC_SUCCESS) { size_t logSize; nvrtcGetProgramLogSize(program, &logSize); std::vector log(logSize); nvrtcGetProgramLog(program, log.data()); std::cout << "Compile log:" << std::endl << log.data() << std::endl; } if (!check_nvrtc_error(result_nvrtc)) { assert(0); } // The lowered name is the name of the template instantiation in the generated PTX code. char const *gemm_kernel_lowered_name; nvrtcGetLoweredName(program, gemm_kernel_instantiation.c_str(), &gemm_kernel_lowered_name); if (!check_nvrtc_error(result_nvrtc)) { assert(0); } // Query the size of the genereated PTX so that we can allocate storage and retrieve it afterwards size_t ptx_size; result_nvrtc = nvrtcGetPTXSize(program, &ptx_size); if (!check_nvrtc_error(result_nvrtc)) { assert(0); } std::vector ptx(ptx_size); result_nvrtc = nvrtcGetPTX(program, ptx.data()); if (!check_nvrtc_error(result_nvrtc)) { assert(0); } // we do not need the nvrtc program anymore //nvrtcDestroyProgram(&program); CUmodule module; CUresult result_cuda; result_cuda = cuModuleLoadDataEx(&module, ptx.data(), 0, 0, 0); if (result_cuda != CUDA_SUCCESS) { assert(0); } CUfunction kernel; result_cuda = cuModuleGetFunction(&kernel, module, gemm_kernel_lowered_name); if (result_cuda != CUDA_SUCCESS) { assert(0); } void* d_a = (void*)tensor_A.device_data(); void* d_b = (void*)tensor_B.device_data(); void* d_c = (void*)tensor_C.device_data(); void* d_d = (void*)tensor_D_computed.device_data(); void* args[] = { &d_d, &d_a, &d_b, &d_c }; // CUfunction f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void** kernelParams, void** extra result_cuda = cuLaunchKernel(kernel, 1, 1, 1, 1, 1, 1, 0, 0 /*cudaStreamDefault*/, args, 0); if (result_cuda != CUDA_SUCCESS) { assert(0); } else { } #endif // verify no errors cudaError_t result = cudaDeviceSynchronize(); if (result != cudaSuccess) { std::cout << "CUDA ERROR: " << cudaGetErrorString(result); return false; } tensor_D_computed.sync_host(); // // Reference implementation // //tensor_D_reference.fill(tensor_C.host_view()); cutlass::reference::host::Gemm reference_gemm; reference_gemm( {Shape::kM, Shape::kN, Shape::kK}, ElementC(1), tensor_A.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); if(!passed) std::cout << "A:\n" << tensor_A.host_view() << "\n\n" << "B:\n" << tensor_B.host_view() << "\n\n" << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; std::cout << "passed " << passed << std::endl; return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace thread } // namespace nvrtc } // namespace test