File size: 12,763 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/***************************************************************************************************

 * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

 * SPDX-License-Identifier: BSD-3-Clause

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright notice, this

 * list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright notice,

 * this list of conditions and the following disclaimer in the documentation

 * and/or other materials provided with the distribution.

 *

 * 3. Neither the name of the copyright holder nor the names of its

 * contributors may be used to endorse or promote products derived from

 * this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 *

 **************************************************************************************************/
/*! \file

    \brief Unit tests for thread-level GEMM

*/

#pragma once

#include <iostream>
#include <cstdio>
#include <vector>

#include "cutlass/gemm/thread/mma.h"
#include "../kernel/thread/testbed_kernel.h"

#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/trace.h"

#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"

#include <cuda.h>
#include <nvrtc.h>
#include "../cutlass/nvrtc/environment.h"
#include <assert.h>

/////////////////////////////////////////////////////////////////////////////////////////////////

namespace test {
namespace nvrtc {
namespace thread {

#define NVRTC_RETURN_IF_ERROR(api)                    \
  do {                                                \
    nvrtcResult _result = api;                        \
    if (_result != NVRTC_SUCCESS) {                   \
      CUTLASS_TRACE_HOST("Nvrtc error: " << _result); \
      return false;                                   \
    }                                                 \
  } while(0)

inline const char * cuda_source_fmt = R"""(



#include "kernel/thread/contraction.hpp"



using Operator = %s;



extern "C" __global__ void global_entry(__grid_constant__ Operator::Params const params) {

  extern __shared__ char smem[];



  Operator op;

  op(params, smem);

}



)""";

struct TestbedKernel {
  static bool compile(std::string const &kernel, std::vector<const char *> const &opts) {
    int sz = std::snprintf(nullptr, 0, cuda_source_fmt, kernel.c_str());
    std::vector<char> cuda_source(sz + 1);
    std::snprintf(&cuda_source[0], cuda_source.size(), cuda_source_fmt, kernel.c_str());

    nvrtcProgram program;
    NVRTC_RETURN_IF_ERROR(
        nvrtcCreateProgram(
            &program,
            cuda_source.data(),
            nullptr,
            static_cast<int32_t>(cutlass::nvrtc::kCutlassHeaderCount),
            cutlass::nvrtc::kCutlassHeaders,
            cutlass::nvrtc::kCutlassHeaderNames)
    );

    nvrtcResult compile_result = 
        nvrtcCompileProgram(
            program, 
            static_cast<int32_t>(opts.size()), 
            opts.data());

    size_t log_size;
    NVRTC_RETURN_IF_ERROR(
        nvrtcGetProgramLogSize(program, &log_size)
    );

    if (log_size > 1) {
      auto log = std::make_unique<char[]>(log_size);

      NVRTC_RETURN_IF_ERROR(
          nvrtcGetProgramLog(program, log.get())
      );
                
      std::cout << log.get() << std::endl;
    }

    NVRTC_RETURN_IF_ERROR(compile_result);

    NVRTC_RETURN_IF_ERROR(
        nvrtcDestroyProgram(&program)
    );

    return true;
  }
};

/// Structure to compute the matrix product
template <
  /// Size of the Gemm problem - concept: gemm::GemmShape<>
  typename Shape,
  /// Data type of A elements
  typename ElementA,
  /// Layout of A matrix (concept: MatrixLayout)
  typename LayoutA,
  /// Data type of B elements
  typename ElementB,
  /// Layout of B matrix (concept: MatrixLayout)
  typename LayoutB,
  /// Element type of C matrix
  typename ElementC,
  /// Layout of C matrix (concept: MatrixLayout)
  typename LayoutC
>
struct Testbed {

  /// Thread-level matrix multiply-accumulate operator
  using Mma = cutlass::gemm::thread::Mma<
    Shape,
    ElementA,
    LayoutA,
    ElementB,
    LayoutB,
    ElementC,
    LayoutC
  >;

  //
  // Data members
  //

  cutlass::HostTensor<ElementA, LayoutA> tensor_A;
  cutlass::HostTensor<ElementB, LayoutB> tensor_B;
  cutlass::HostTensor<ElementC, LayoutC> tensor_C;
  cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
  cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;

  //
  // Methods
  //

  /// Allocates workspace in device memory
  Testbed() {

    tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK));
    tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN));
    tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
    tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
    tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
  }

  static inline bool check_nvrtc_error(nvrtcResult error) {
    if (error != NVRTC_SUCCESS) {
      std::cerr << "failed to compile ";
      return false;
    }
    return true;
  }

  /// Runs the test
  bool run(std::string const &gemm_traits) {

    //
    // initialize device memory
    //

    cutlass::reference::host::BlockFillSequential(
      tensor_A.host_data(),
      tensor_A.capacity()
    );

    cutlass::reference::host::BlockFillSequential(
      tensor_B.host_data(),
      tensor_B.capacity(),
      ElementB(1),
      ElementB(2)
    );

    cutlass::reference::host::TensorFill(
      tensor_C.host_view(),
      ElementC(0)
    );

    cutlass::reference::host::TensorFill(
      tensor_D_computed.host_view(),
      ElementC(0)
    );

    cutlass::reference::host::TensorFill(
      tensor_D_reference.host_view(),
      ElementC(0)
    );

    tensor_A.sync_device();
    tensor_B.sync_device();
    tensor_C.sync_device();
    tensor_D_computed.sync_device();

#if 0
    // launch kernel
    cutlass::gemm::kernel::testbed_kernel<Mma><<< dim3(1, 1), dim3(1, 1, 1) >>>(
      tensor_D_computed.device_data(),
      tensor_A.device_data(),
      tensor_B.device_data(),
      tensor_C.device_data());

#else
    // Instantiate gemm_kernel
    nvrtcResult result_nvrtc;
    nvrtcProgram program;
    static char const *src =
        "#include \"cutlass/gemm/thread/mma.h\"\n"
        "#include \"cutlass/gemm/gemm.h\"\n"
        "#include \"cutlass/layout/matrix.h\"\n"
        "#include \"unit/nvrtc/kernel/thread/testbed_kernel.h\"\n"
    ;

    std::string type_name;
#if 0
    // TODO Ideally we'd use nvrtcGetTypeName to determine the type, but it cannot resolve enum symbol names
    // As altername solution we might want to implement to_string<GemmTraits>() to get the traits string.
    nvrtcGetTypeName<typename GemmTraits_>(&type_name);
#else
    type_name = gemm_traits;
#endif

    result_nvrtc = nvrtcCreateProgram(&program,
                                    src,
                                    NULL,
                                    (int)cutlass::nvrtc::kCutlassHeaderCount,
                                    cutlass::nvrtc::kCutlassHeaders,
                                    cutlass::nvrtc::kCutlassHeaderNames);
    check_nvrtc_error(result_nvrtc);

    std::string gemm_kernel_instantiation =
      "test::nvrtc::kernel::thread::testbed_kernel< " + type_name + " >";
    nvrtcAddNameExpression(program, gemm_kernel_instantiation.c_str());

    const char *opts[] = {"--gpu-architecture=compute_75",
                          "--std=c++17",
                          "--include-path=/usr/local/cuda-10.1/include"};

    result_nvrtc = nvrtcCompileProgram(program, 3, opts);
    if (result_nvrtc != NVRTC_SUCCESS) {
      size_t logSize;
      nvrtcGetProgramLogSize(program, &logSize);
      std::vector<char> log(logSize);
      nvrtcGetProgramLog(program, log.data());
      std::cout << "Compile log:" << std::endl << log.data() << std::endl;
    }
    if (!check_nvrtc_error(result_nvrtc)) {
      assert(0);
    }

    // The lowered name is the name of the template instantiation in the generated PTX code.
    char const *gemm_kernel_lowered_name;
    nvrtcGetLoweredName(program, gemm_kernel_instantiation.c_str(), &gemm_kernel_lowered_name);
    if (!check_nvrtc_error(result_nvrtc)) {
      assert(0);
    }

    // Query the size of the genereated PTX so that we can allocate storage and retrieve it afterwards
    size_t ptx_size;
    result_nvrtc = nvrtcGetPTXSize(program, &ptx_size);
    if (!check_nvrtc_error(result_nvrtc)) {
      assert(0);
    }

    std::vector<char> ptx(ptx_size);
    result_nvrtc = nvrtcGetPTX(program, ptx.data());
    if (!check_nvrtc_error(result_nvrtc)) {
      assert(0);
    }

    // we do not need the nvrtc program anymore
    //nvrtcDestroyProgram(&program);

    CUmodule module;
    CUresult result_cuda;
    result_cuda = cuModuleLoadDataEx(&module, ptx.data(), 0, 0, 0);
    if (result_cuda != CUDA_SUCCESS) {
      assert(0);
    }

    CUfunction kernel;
    result_cuda = cuModuleGetFunction(&kernel, module, gemm_kernel_lowered_name);
    if (result_cuda != CUDA_SUCCESS) {
      assert(0);
    }

    void* d_a = (void*)tensor_A.device_data();
    void* d_b = (void*)tensor_B.device_data();
    void* d_c = (void*)tensor_C.device_data();
    void* d_d = (void*)tensor_D_computed.device_data();
    void* args[] = { &d_d, &d_a, &d_b, &d_c };

    // CUfunction f, unsigned int  gridDimX, unsigned int  gridDimY, unsigned int  gridDimZ, unsigned int  blockDimX, unsigned int  blockDimY, unsigned int  blockDimZ, unsigned int  sharedMemBytes, CUstream hStream, void** kernelParams, void** extra
    result_cuda = cuLaunchKernel(kernel, 1, 1, 1, 1, 1, 1, 0, 0 /*cudaStreamDefault*/, args, 0);
    if (result_cuda != CUDA_SUCCESS) {
      assert(0);
    } else {
}
#endif

    // verify no errors
    cudaError_t result = cudaDeviceSynchronize();

    if (result != cudaSuccess) {
      std::cout << "CUDA ERROR: " << cudaGetErrorString(result);
      return false;
    }

    tensor_D_computed.sync_host();

    //
    // Reference implementation
    //

    //tensor_D_reference.fill(tensor_C.host_view());

    cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
                                   ElementC, LayoutC, ElementC, ElementC> reference_gemm;

    reference_gemm(
      {Shape::kM, Shape::kN, Shape::kK},
      ElementC(1),
      tensor_A.host_ref(),
      tensor_B.host_ref(),
      ElementC(0),
      tensor_D_reference.host_ref()
    );

    //
    // Verify equivalence
    //

    // compare
    bool passed = cutlass::reference::host::TensorEquals(
      tensor_D_computed.host_view(),
      tensor_D_reference.host_view()
    );

    if(!passed) std::cout
      << "A:\n" << tensor_A.host_view() << "\n\n"
      << "B:\n" << tensor_B.host_view() << "\n\n"
      << "C:\n" << tensor_C.host_view() << "\n\n"
      << "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
      << "Computed:\n" << tensor_D_computed.host_view() << std::endl;
    
    std::cout << "passed " << passed << std::endl;
    
    return passed;
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////

} // namespace thread
} // namespace nvrtc
} // namespace test