Spaces:
Sleeping
Sleeping
File size: 12,763 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#pragma once
#include <iostream>
#include <cstdio>
#include <vector>
#include "cutlass/gemm/thread/mma.h"
#include "../kernel/thread/testbed_kernel.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/trace.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/gemm.h"
#include <cuda.h>
#include <nvrtc.h>
#include "../cutlass/nvrtc/environment.h"
#include <assert.h>
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace nvrtc {
namespace thread {
#define NVRTC_RETURN_IF_ERROR(api) \
do { \
nvrtcResult _result = api; \
if (_result != NVRTC_SUCCESS) { \
CUTLASS_TRACE_HOST("Nvrtc error: " << _result); \
return false; \
} \
} while(0)
inline const char * cuda_source_fmt = R"""(
#include "kernel/thread/contraction.hpp"
using Operator = %s;
extern "C" __global__ void global_entry(__grid_constant__ Operator::Params const params) {
extern __shared__ char smem[];
Operator op;
op(params, smem);
}
)""";
struct TestbedKernel {
static bool compile(std::string const &kernel, std::vector<const char *> const &opts) {
int sz = std::snprintf(nullptr, 0, cuda_source_fmt, kernel.c_str());
std::vector<char> cuda_source(sz + 1);
std::snprintf(&cuda_source[0], cuda_source.size(), cuda_source_fmt, kernel.c_str());
nvrtcProgram program;
NVRTC_RETURN_IF_ERROR(
nvrtcCreateProgram(
&program,
cuda_source.data(),
nullptr,
static_cast<int32_t>(cutlass::nvrtc::kCutlassHeaderCount),
cutlass::nvrtc::kCutlassHeaders,
cutlass::nvrtc::kCutlassHeaderNames)
);
nvrtcResult compile_result =
nvrtcCompileProgram(
program,
static_cast<int32_t>(opts.size()),
opts.data());
size_t log_size;
NVRTC_RETURN_IF_ERROR(
nvrtcGetProgramLogSize(program, &log_size)
);
if (log_size > 1) {
auto log = std::make_unique<char[]>(log_size);
NVRTC_RETURN_IF_ERROR(
nvrtcGetProgramLog(program, log.get())
);
std::cout << log.get() << std::endl;
}
NVRTC_RETURN_IF_ERROR(compile_result);
NVRTC_RETURN_IF_ERROR(
nvrtcDestroyProgram(&program)
);
return true;
}
};
/// Structure to compute the matrix product
template <
/// Size of the Gemm problem - concept: gemm::GemmShape<>
typename Shape,
/// Data type of A elements
typename ElementA,
/// Layout of A matrix (concept: MatrixLayout)
typename LayoutA,
/// Data type of B elements
typename ElementB,
/// Layout of B matrix (concept: MatrixLayout)
typename LayoutB,
/// Element type of C matrix
typename ElementC,
/// Layout of C matrix (concept: MatrixLayout)
typename LayoutC
>
struct Testbed {
/// Thread-level matrix multiply-accumulate operator
using Mma = cutlass::gemm::thread::Mma<
Shape,
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC
>;
//
// Data members
//
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
//
// Methods
//
/// Allocates workspace in device memory
Testbed() {
tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK));
tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN));
tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN));
tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false);
}
static inline bool check_nvrtc_error(nvrtcResult error) {
if (error != NVRTC_SUCCESS) {
std::cerr << "failed to compile ";
return false;
}
return true;
}
/// Runs the test
bool run(std::string const &gemm_traits) {
//
// initialize device memory
//
cutlass::reference::host::BlockFillSequential(
tensor_A.host_data(),
tensor_A.capacity()
);
cutlass::reference::host::BlockFillSequential(
tensor_B.host_data(),
tensor_B.capacity(),
ElementB(1),
ElementB(2)
);
cutlass::reference::host::TensorFill(
tensor_C.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_computed.host_view(),
ElementC(0)
);
cutlass::reference::host::TensorFill(
tensor_D_reference.host_view(),
ElementC(0)
);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D_computed.sync_device();
#if 0
// launch kernel
cutlass::gemm::kernel::testbed_kernel<Mma><<< dim3(1, 1), dim3(1, 1, 1) >>>(
tensor_D_computed.device_data(),
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data());
#else
// Instantiate gemm_kernel
nvrtcResult result_nvrtc;
nvrtcProgram program;
static char const *src =
"#include \"cutlass/gemm/thread/mma.h\"\n"
"#include \"cutlass/gemm/gemm.h\"\n"
"#include \"cutlass/layout/matrix.h\"\n"
"#include \"unit/nvrtc/kernel/thread/testbed_kernel.h\"\n"
;
std::string type_name;
#if 0
// TODO Ideally we'd use nvrtcGetTypeName to determine the type, but it cannot resolve enum symbol names
// As altername solution we might want to implement to_string<GemmTraits>() to get the traits string.
nvrtcGetTypeName<typename GemmTraits_>(&type_name);
#else
type_name = gemm_traits;
#endif
result_nvrtc = nvrtcCreateProgram(&program,
src,
NULL,
(int)cutlass::nvrtc::kCutlassHeaderCount,
cutlass::nvrtc::kCutlassHeaders,
cutlass::nvrtc::kCutlassHeaderNames);
check_nvrtc_error(result_nvrtc);
std::string gemm_kernel_instantiation =
"test::nvrtc::kernel::thread::testbed_kernel< " + type_name + " >";
nvrtcAddNameExpression(program, gemm_kernel_instantiation.c_str());
const char *opts[] = {"--gpu-architecture=compute_75",
"--std=c++17",
"--include-path=/usr/local/cuda-10.1/include"};
result_nvrtc = nvrtcCompileProgram(program, 3, opts);
if (result_nvrtc != NVRTC_SUCCESS) {
size_t logSize;
nvrtcGetProgramLogSize(program, &logSize);
std::vector<char> log(logSize);
nvrtcGetProgramLog(program, log.data());
std::cout << "Compile log:" << std::endl << log.data() << std::endl;
}
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
// The lowered name is the name of the template instantiation in the generated PTX code.
char const *gemm_kernel_lowered_name;
nvrtcGetLoweredName(program, gemm_kernel_instantiation.c_str(), &gemm_kernel_lowered_name);
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
// Query the size of the genereated PTX so that we can allocate storage and retrieve it afterwards
size_t ptx_size;
result_nvrtc = nvrtcGetPTXSize(program, &ptx_size);
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
std::vector<char> ptx(ptx_size);
result_nvrtc = nvrtcGetPTX(program, ptx.data());
if (!check_nvrtc_error(result_nvrtc)) {
assert(0);
}
// we do not need the nvrtc program anymore
//nvrtcDestroyProgram(&program);
CUmodule module;
CUresult result_cuda;
result_cuda = cuModuleLoadDataEx(&module, ptx.data(), 0, 0, 0);
if (result_cuda != CUDA_SUCCESS) {
assert(0);
}
CUfunction kernel;
result_cuda = cuModuleGetFunction(&kernel, module, gemm_kernel_lowered_name);
if (result_cuda != CUDA_SUCCESS) {
assert(0);
}
void* d_a = (void*)tensor_A.device_data();
void* d_b = (void*)tensor_B.device_data();
void* d_c = (void*)tensor_C.device_data();
void* d_d = (void*)tensor_D_computed.device_data();
void* args[] = { &d_d, &d_a, &d_b, &d_c };
// CUfunction f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, CUstream hStream, void** kernelParams, void** extra
result_cuda = cuLaunchKernel(kernel, 1, 1, 1, 1, 1, 1, 0, 0 /*cudaStreamDefault*/, args, 0);
if (result_cuda != CUDA_SUCCESS) {
assert(0);
} else {
}
#endif
// verify no errors
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cout << "CUDA ERROR: " << cudaGetErrorString(result);
return false;
}
tensor_D_computed.sync_host();
//
// Reference implementation
//
//tensor_D_reference.fill(tensor_C.host_view());
cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB,
ElementC, LayoutC, ElementC, ElementC> reference_gemm;
reference_gemm(
{Shape::kM, Shape::kN, Shape::kK},
ElementC(1),
tensor_A.host_ref(),
tensor_B.host_ref(),
ElementC(0),
tensor_D_reference.host_ref()
);
//
// Verify equivalence
//
// compare
bool passed = cutlass::reference::host::TensorEquals(
tensor_D_computed.host_view(),
tensor_D_reference.host_view()
);
if(!passed) std::cout
<< "A:\n" << tensor_A.host_view() << "\n\n"
<< "B:\n" << tensor_B.host_view() << "\n\n"
<< "C:\n" << tensor_C.host_view() << "\n\n"
<< "Reference:\n" << tensor_D_reference.host_view() << "\n\n"
<< "Computed:\n" << tensor_D_computed.host_view() << std::endl;
std::cout << "passed " << passed << std::endl;
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace nvrtc
} // namespace test
|