File size: 10,864 Bytes
7536853
5a6715f
8359d12
72ccc50
8359d12
0217602
 
c2c5723
 
 
 
0217602
 
 
78fd9fa
cd66018
 
78fd9fa
bbc9fae
936fd23
78fd9fa
 
b3975d6
 
 
16e91ed
8edd409
4c81ad7
 
 
 
 
 
 
 
 
 
 
 
 
cd66018
4c81ad7
 
 
736da61
bbc9fae
4c81ad7
 
 
 
 
 
 
 
 
ac5463a
4c81ad7
 
 
3206d9d
547606d
16e91ed
4c81ad7
 
 
 
52a3d0e
4c81ad7
 
 
 
 
29c030d
4c81ad7
 
78fd9fa
4c81ad7
 
 
 
 
 
 
 
78fd9fa
4c81ad7
736da61
4c81ad7
 
78fd9fa
4c81ad7
 
 
 
 
 
 
 
 
 
52a3d0e
 
4c81ad7
 
16e91ed
 
 
 
 
b3975d6
5c442ff
 
 
 
 
 
 
 
 
b3975d6
5c442ff
14bd49d
16e91ed
 
 
 
 
 
 
 
 
 
 
 
4c81ad7
af4e318
 
 
 
13426ea
af4e318
13426ea
af4e318
13426ea
af4e318
13426ea
af4e318
13426ea
af4e318
13426ea
af4e318
13426ea
af4e318
13426ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4e318
13426ea
 
 
 
af4e318
 
 
 
29c030d
 
a61471c
595159e
a61471c
af4e318
4c81ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5463a
78fd9fa
 
 
 
 
 
 
 
 
 
ac5463a
78fd9fa
 
7536853
ac5463a
4c81ad7
ac5463a
 
 
4c81ad7
 
 
 
ac5463a
 
78fd9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c81ad7
78fd9fa
ac5463a
78fd9fa
4c81ad7
78fd9fa
4c81ad7
 
 
 
ac5463a
 
 
78fd9fa
4c81ad7
 
 
 
 
 
4abe4e3
05cc9a5
af4e318
5bdbb4a
157727c
4c81ad7
 
c05cd1b
632dfa0
78fd9fa
4c81ad7
cd66018
 
f775b00
 
 
 
 
 
05cc9a5
 
 
 
 
cd66018
f775b00
 
 
 
 
 
 
 
cd66018
 
6e94dfd
 
cd66018
8359d12
51a7d9e
0217602
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

import subprocess 
import os
import torch
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging
from typing import List, Tuple, Generator
from dataclasses import dataclass
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_cerebras import ChatCerebras
from queue import Queue
from threading import Thread
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_google_genai import ChatGoogleGenerativeAI

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class Message:
    role: str
    content: str
    timestamp: str

class ChatHistory:
    def __init__(self):
        self.messages: List[Message] = []
    
    def add_message(self, role: str, content: str):
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        self.messages.append(Message(role=role, content=content, timestamp=timestamp))
    
    def get_formatted_history(self, max_messages: int = 10) -> str:
        recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
        formatted_history = "\n".join([
            f"{msg.role}: {msg.content}" for msg in recent_messages
        ])
        return formatted_history
    
    def clear(self):
        self.messages = []

# Load environment variables and setup
load_dotenv()

HF_TOKEN = os.getenv("HF_TOKEN")
C_apikey = os.getenv("C_apikey")
OPENAPI_KEY = os.getenv("OPENAPI_KEY")
GEMINI = os.getenv("GEMINI")
if not HF_TOKEN:
    logger.error("HF_TOKEN is not set in the environment variables.")
    exit(1)

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

try:
    client = QdrantClient(
        url=os.getenv("QDRANT_URL"),
        api_key=os.getenv("QDRANT_API_KEY"),
        prefer_grpc=True
    )
except Exception as e:
    logger.error("Failed to connect to Qdrant.")
    exit(1)

collection_name = "mawared"

try:
    client.create_collection(
        collection_name=collection_name,
        vectors_config=models.VectorParams(
            size=384,
            distance=models.Distance.COSINE
        )
    )
except Exception as e:
    if "already exists" not in str(e):
        logger.error(f"Error creating collection: {e}")
        exit(1)

db = Qdrant(
    client=client,
    collection_name=collection_name,
    embeddings=embeddings,
)

retriever = db.as_retriever(
    search_type="similarity",
    search_kwargs={"k": 5}
)

#llm = ChatCerebras(
  #  model="llama-3.3-70b",
  #  api_key=C_apikey,
  #  streaming=True
#)

# llm = ChatOpenAI(
#     model="meta-llama/Llama-3.3-70B-Instruct",
#     temperature=0,
#     max_tokens=None,
#     timeout=None,
#     max_retries=2,
#     api_key=HF_TOKEN,  # if you prefer to pass api key in directly instaed of using env vars
#     base_url="https://api-inference.huggingface.co/v1/",
#     stream=True,
    
# )


llm = ChatGoogleGenerativeAI(
    model="gemini-2.0-flash-thinking-exp-01-21",
    temperature=0,
    max_tokens=None,
    timeout=None,
    max_retries=2,
    api_key=GEMINI,
    stream=True,
    
)

template = """
You are a specialized friendly  AI assistant for the Mawared HR System, designed to provide accurate and contextually relevant support based solely on the provided context and chat history.

Core Principles
Source of Truth: Use only the information available in the retrieved context and chat history. Do not fabricate details or access external knowledge.

Clarity and Precision: Communicate clearly, concisely, and professionally, using straightforward language for easy comprehension.

Actionable Guidance: Deliver practical solutions, step-by-step workflows, and troubleshooting advice directly related to Mawared HR queries.

Structured Instructions: Provide numbered, easy-to-follow instructions when explaining complex processes.

Targeted Clarification: If a query lacks detail, ask specific questions to obtain the necessary information, explicitly stating what is missing.

Exclusive Focus: Address only Mawared HR-related topics and avoid unrelated discussions.

Professional Tone: Maintain a friendly, approachable, and professional demeanor.

Response Guidelines
Analyze the Query Thoughtfully:

Start by thoroughly examining the user's question and reviewing the chat history.
Consider what the user explicitly asked and infer their intent from the context provided.
Mentally identify potential gaps in information before proceeding.
Break Down Context Relevance:

Isolate and interpret relevant pieces of context that apply directly to the query.
Match the user's needs with the most relevant data from the context or chat history.
Develop the Response in a Stepwise Manner:

Construct a logical chain of thoughts:
What does the user want to achieve?
Which parts of the context can address this?
What steps or details are needed for clarity?
Provide responses in a structured, easy-to-follow format (e.g., numbered lists, bullet points).
Ask for Clarifications Strategically:

If the query lacks sufficient detail, identify the precise information missing.
Frame your clarification politely and explicitly (e.g., “Could you confirm [specific detail] to proceed with [action/task]?”).
Ensure Directness and Professionalism:

Avoid unnecessary elaborations or irrelevant information.
Maintain a friendly, professional tone throughout the response.
Double-Check for Exclusivity:

Ensure all guidance is strictly based on the retrieved context and chat history.
Avoid speculating or introducing external knowledge about Mawared HR.
Handling Information Gaps
If the provided context is insufficient to answer the query:
State explicitly that additional information is required to proceed.
Clearly outline what details are missing.
Avoid fabricating details or making assumptions.
Critical Constraint
STRICTLY rely on the provided context and chat history for all responses. Do not generate information about Mawared HR beyond these sources.

Note: Do not mention a human support contact unless explicitly asked.
Refuse to answer any questions thats not related to mawared Hr.
You should think step by step to figure out the answer.
Previous Conversation: {chat_history}
Retrieved Context: {context}
Current Question: {question}
Answer:{{answer}}
"""

prompt = ChatPromptTemplate.from_template(template)

def create_rag_chain(chat_history: str):
    chain = (
        {
            "context": retriever,
            "question": RunnablePassthrough(),
            "chat_history": lambda x: chat_history
        }
        | prompt
        | llm
        | StrOutputParser()
    )
    return chain

chat_history = ChatHistory()

def process_stream(stream_queue: Queue, history: List[List[str]]) -> Generator[List[List[str]], None, None]:
    """Process the streaming response and update the chat interface"""
    current_response = ""
    
    while True:
        chunk = stream_queue.get()
        if chunk is None:  # Signal that streaming is complete
            break
            
        current_response += chunk
        new_history = history.copy()
        new_history[-1][1] = current_response  # Update the assistant's message
        yield new_history


def ask_question_gradio(question: str, history: List[List[str]]) -> Generator[tuple, None, None]:
    try:
        if history is None:
            history = []
            
        chat_history.add_message("user", question)
        formatted_history = chat_history.get_formatted_history()
        rag_chain = create_rag_chain(formatted_history)
        
        # Update history with user message and empty assistant message
        history.append([question, ""])  # User message
        
        # Create a queue for streaming responses
        stream_queue = Queue()
        
        # Function to process the stream in a separate thread
        def stream_processor():
            try:
                for chunk in rag_chain.stream(question):
                    stream_queue.put(chunk)
                stream_queue.put(None)  # Signal completion
            except Exception as e:
                logger.error(f"Streaming error: {e}")
                stream_queue.put(None)
        
        # Start streaming in a separate thread
        Thread(target=stream_processor).start()
        
        # Yield updates to the chat interface
        response = ""
        for updated_history in process_stream(stream_queue, history):
            response = updated_history[-1][1]
            yield "", updated_history
        
        # Add final response to chat history
        chat_history.add_message("assistant", response)
        
    except Exception as e:
        logger.error(f"Error during question processing: {e}")
        if not history:
            history = []
        history.append([question, "An error occurred. Please try again later."])
        yield "", history

def clear_chat():
    chat_history.clear()
    return [], ""

# Gradio Interface
with gr.Blocks() as iface:
    gr.Image("Image.jpg", width=750, height=300, show_label=False, show_download_button=False)
    gr.Markdown("# Mawared HR Assistant 3.0.0")
    gr.Markdown('### Instructions')
    gr.Markdown("Ask a question about MawaredHR and get a detailed answer")
    
    chatbot = gr.Chatbot(
        height=750,
        show_label=False,
        bubble_full_width=False,
    )
    
    with gr.Row():
        with gr.Column(scale=20):
            question_input = gr.Textbox(
                label="Ask a question:",
                placeholder="Type your question here...",
                show_label=False
            )
        with gr.Column(scale=4):
            with gr.Row():
                with gr.Column():
                    send_button = gr.Button("Send", variant="primary", size="sm")
                    clear_button = gr.Button("Clear Chat", size="sm")
    
    # Handle both submit events (Enter key and Send button)
    submit_events = [question_input.submit, send_button.click]
    for submit_event in submit_events:
        submit_event(
            ask_question_gradio,
            inputs=[question_input, chatbot],
            outputs=[question_input, chatbot]
        )
    
    clear_button.click(
        clear_chat,
        outputs=[chatbot, question_input]
    )

if __name__ == "__main__":
    iface.launch()