File size: 10,864 Bytes
7536853 5a6715f 8359d12 72ccc50 8359d12 0217602 c2c5723 0217602 78fd9fa cd66018 78fd9fa bbc9fae 936fd23 78fd9fa b3975d6 16e91ed 8edd409 4c81ad7 cd66018 4c81ad7 736da61 bbc9fae 4c81ad7 ac5463a 4c81ad7 3206d9d 547606d 16e91ed 4c81ad7 52a3d0e 4c81ad7 29c030d 4c81ad7 78fd9fa 4c81ad7 78fd9fa 4c81ad7 736da61 4c81ad7 78fd9fa 4c81ad7 52a3d0e 4c81ad7 16e91ed b3975d6 5c442ff b3975d6 5c442ff 14bd49d 16e91ed 4c81ad7 af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 13426ea af4e318 29c030d a61471c 595159e a61471c af4e318 4c81ad7 ac5463a 78fd9fa ac5463a 78fd9fa 7536853 ac5463a 4c81ad7 ac5463a 4c81ad7 ac5463a 78fd9fa 4c81ad7 78fd9fa ac5463a 78fd9fa 4c81ad7 78fd9fa 4c81ad7 ac5463a 78fd9fa 4c81ad7 4abe4e3 05cc9a5 af4e318 5bdbb4a 157727c 4c81ad7 c05cd1b 632dfa0 78fd9fa 4c81ad7 cd66018 f775b00 05cc9a5 cd66018 f775b00 cd66018 6e94dfd cd66018 8359d12 51a7d9e 0217602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import subprocess
import os
import torch
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging
from typing import List, Tuple, Generator
from dataclasses import dataclass
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_cerebras import ChatCerebras
from queue import Queue
from threading import Thread
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_google_genai import ChatGoogleGenerativeAI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Message:
role: str
content: str
timestamp: str
class ChatHistory:
def __init__(self):
self.messages: List[Message] = []
def add_message(self, role: str, content: str):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
def get_formatted_history(self, max_messages: int = 10) -> str:
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
formatted_history = "\n".join([
f"{msg.role}: {msg.content}" for msg in recent_messages
])
return formatted_history
def clear(self):
self.messages = []
# Load environment variables and setup
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
C_apikey = os.getenv("C_apikey")
OPENAPI_KEY = os.getenv("OPENAPI_KEY")
GEMINI = os.getenv("GEMINI")
if not HF_TOKEN:
logger.error("HF_TOKEN is not set in the environment variables.")
exit(1)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
try:
client = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=True
)
except Exception as e:
logger.error("Failed to connect to Qdrant.")
exit(1)
collection_name = "mawared"
try:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=384,
distance=models.Distance.COSINE
)
)
except Exception as e:
if "already exists" not in str(e):
logger.error(f"Error creating collection: {e}")
exit(1)
db = Qdrant(
client=client,
collection_name=collection_name,
embeddings=embeddings,
)
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
#llm = ChatCerebras(
# model="llama-3.3-70b",
# api_key=C_apikey,
# streaming=True
#)
# llm = ChatOpenAI(
# model="meta-llama/Llama-3.3-70B-Instruct",
# temperature=0,
# max_tokens=None,
# timeout=None,
# max_retries=2,
# api_key=HF_TOKEN, # if you prefer to pass api key in directly instaed of using env vars
# base_url="https://api-inference.huggingface.co/v1/",
# stream=True,
# )
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash-thinking-exp-01-21",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
api_key=GEMINI,
stream=True,
)
template = """
You are a specialized friendly AI assistant for the Mawared HR System, designed to provide accurate and contextually relevant support based solely on the provided context and chat history.
Core Principles
Source of Truth: Use only the information available in the retrieved context and chat history. Do not fabricate details or access external knowledge.
Clarity and Precision: Communicate clearly, concisely, and professionally, using straightforward language for easy comprehension.
Actionable Guidance: Deliver practical solutions, step-by-step workflows, and troubleshooting advice directly related to Mawared HR queries.
Structured Instructions: Provide numbered, easy-to-follow instructions when explaining complex processes.
Targeted Clarification: If a query lacks detail, ask specific questions to obtain the necessary information, explicitly stating what is missing.
Exclusive Focus: Address only Mawared HR-related topics and avoid unrelated discussions.
Professional Tone: Maintain a friendly, approachable, and professional demeanor.
Response Guidelines
Analyze the Query Thoughtfully:
Start by thoroughly examining the user's question and reviewing the chat history.
Consider what the user explicitly asked and infer their intent from the context provided.
Mentally identify potential gaps in information before proceeding.
Break Down Context Relevance:
Isolate and interpret relevant pieces of context that apply directly to the query.
Match the user's needs with the most relevant data from the context or chat history.
Develop the Response in a Stepwise Manner:
Construct a logical chain of thoughts:
What does the user want to achieve?
Which parts of the context can address this?
What steps or details are needed for clarity?
Provide responses in a structured, easy-to-follow format (e.g., numbered lists, bullet points).
Ask for Clarifications Strategically:
If the query lacks sufficient detail, identify the precise information missing.
Frame your clarification politely and explicitly (e.g., “Could you confirm [specific detail] to proceed with [action/task]?”).
Ensure Directness and Professionalism:
Avoid unnecessary elaborations or irrelevant information.
Maintain a friendly, professional tone throughout the response.
Double-Check for Exclusivity:
Ensure all guidance is strictly based on the retrieved context and chat history.
Avoid speculating or introducing external knowledge about Mawared HR.
Handling Information Gaps
If the provided context is insufficient to answer the query:
State explicitly that additional information is required to proceed.
Clearly outline what details are missing.
Avoid fabricating details or making assumptions.
Critical Constraint
STRICTLY rely on the provided context and chat history for all responses. Do not generate information about Mawared HR beyond these sources.
Note: Do not mention a human support contact unless explicitly asked.
Refuse to answer any questions thats not related to mawared Hr.
You should think step by step to figure out the answer.
Previous Conversation: {chat_history}
Retrieved Context: {context}
Current Question: {question}
Answer:{{answer}}
"""
prompt = ChatPromptTemplate.from_template(template)
def create_rag_chain(chat_history: str):
chain = (
{
"context": retriever,
"question": RunnablePassthrough(),
"chat_history": lambda x: chat_history
}
| prompt
| llm
| StrOutputParser()
)
return chain
chat_history = ChatHistory()
def process_stream(stream_queue: Queue, history: List[List[str]]) -> Generator[List[List[str]], None, None]:
"""Process the streaming response and update the chat interface"""
current_response = ""
while True:
chunk = stream_queue.get()
if chunk is None: # Signal that streaming is complete
break
current_response += chunk
new_history = history.copy()
new_history[-1][1] = current_response # Update the assistant's message
yield new_history
def ask_question_gradio(question: str, history: List[List[str]]) -> Generator[tuple, None, None]:
try:
if history is None:
history = []
chat_history.add_message("user", question)
formatted_history = chat_history.get_formatted_history()
rag_chain = create_rag_chain(formatted_history)
# Update history with user message and empty assistant message
history.append([question, ""]) # User message
# Create a queue for streaming responses
stream_queue = Queue()
# Function to process the stream in a separate thread
def stream_processor():
try:
for chunk in rag_chain.stream(question):
stream_queue.put(chunk)
stream_queue.put(None) # Signal completion
except Exception as e:
logger.error(f"Streaming error: {e}")
stream_queue.put(None)
# Start streaming in a separate thread
Thread(target=stream_processor).start()
# Yield updates to the chat interface
response = ""
for updated_history in process_stream(stream_queue, history):
response = updated_history[-1][1]
yield "", updated_history
# Add final response to chat history
chat_history.add_message("assistant", response)
except Exception as e:
logger.error(f"Error during question processing: {e}")
if not history:
history = []
history.append([question, "An error occurred. Please try again later."])
yield "", history
def clear_chat():
chat_history.clear()
return [], ""
# Gradio Interface
with gr.Blocks() as iface:
gr.Image("Image.jpg", width=750, height=300, show_label=False, show_download_button=False)
gr.Markdown("# Mawared HR Assistant 3.0.0")
gr.Markdown('### Instructions')
gr.Markdown("Ask a question about MawaredHR and get a detailed answer")
chatbot = gr.Chatbot(
height=750,
show_label=False,
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=20):
question_input = gr.Textbox(
label="Ask a question:",
placeholder="Type your question here...",
show_label=False
)
with gr.Column(scale=4):
with gr.Row():
with gr.Column():
send_button = gr.Button("Send", variant="primary", size="sm")
clear_button = gr.Button("Clear Chat", size="sm")
# Handle both submit events (Enter key and Send button)
submit_events = [question_input.submit, send_button.click]
for submit_event in submit_events:
submit_event(
ask_question_gradio,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot]
)
clear_button.click(
clear_chat,
outputs=[chatbot, question_input]
)
if __name__ == "__main__":
iface.launch() |