Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,39 @@ from qdrant_client import QdrantClient, models
|
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
import gradio as gr
|
11 |
import logging
|
|
|
|
|
|
|
12 |
|
13 |
# Configure logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
19 |
|
@@ -78,45 +106,104 @@ llm = ChatOpenAI(
|
|
78 |
model="meta-llama/Llama-3.3-70B-Instruct"
|
79 |
)
|
80 |
|
81 |
-
# Create prompt template
|
82 |
template = """
|
83 |
-
You are an expert assistant specializing in the Mawared HR System. Your task is to provide accurate and contextually relevant answers
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
{context}
|
86 |
-
|
|
|
87 |
{question}
|
|
|
|
|
|
|
88 |
Answer:
|
89 |
"""
|
90 |
|
91 |
prompt = ChatPromptTemplate.from_template(template)
|
92 |
|
93 |
-
# Create the RAG chain
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# Gradio Function
|
102 |
-
def ask_question_gradio(question):
|
103 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
response = ""
|
105 |
for chunk in rag_chain.stream(question):
|
106 |
response += chunk
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
logger.error(f"Error during question processing: {e}")
|
110 |
-
return "An error occurred. Please try again later."
|
|
|
|
|
|
|
|
|
111 |
|
112 |
# Gradio Interface
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
# Launch the Gradio App
|
122 |
if __name__ == "__main__":
|
|
|
9 |
from langchain_openai import ChatOpenAI
|
10 |
import gradio as gr
|
11 |
import logging
|
12 |
+
from typing import List, Tuple
|
13 |
+
from dataclasses import dataclass
|
14 |
+
from datetime import datetime
|
15 |
|
16 |
# Configure logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
@dataclass
|
21 |
+
class Message:
|
22 |
+
role: str
|
23 |
+
content: str
|
24 |
+
timestamp: str
|
25 |
+
|
26 |
+
class ChatHistory:
|
27 |
+
def __init__(self):
|
28 |
+
self.messages: List[Message] = []
|
29 |
+
|
30 |
+
def add_message(self, role: str, content: str):
|
31 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
32 |
+
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
|
33 |
+
|
34 |
+
def get_formatted_history(self, max_messages: int = 5) -> str:
|
35 |
+
"""Returns the most recent conversation history formatted as a string"""
|
36 |
+
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
|
37 |
+
formatted_history = "\n".join([
|
38 |
+
f"{msg.role}: {msg.content}" for msg in recent_messages
|
39 |
+
])
|
40 |
+
return formatted_history
|
41 |
+
|
42 |
+
def clear(self):
|
43 |
+
self.messages = []
|
44 |
+
|
45 |
# Load environment variables
|
46 |
load_dotenv()
|
47 |
|
|
|
106 |
model="meta-llama/Llama-3.3-70B-Instruct"
|
107 |
)
|
108 |
|
109 |
+
# Create prompt template with chat history
|
110 |
template = """
|
111 |
+
You are an expert assistant specializing in the Mawared HR System. Your task is to provide accurate and contextually relevant answers based on the provided context and chat history. If you need more information, ask targeted clarifying questions.
|
112 |
+
|
113 |
+
Previous Conversation:
|
114 |
+
{chat_history}
|
115 |
+
|
116 |
+
Current Context:
|
117 |
{context}
|
118 |
+
|
119 |
+
Current Question:
|
120 |
{question}
|
121 |
+
|
122 |
+
Please provide a response that takes into account both the current context and the previous conversation history. If you refer to information from the chat history, make it clear where that information came from.
|
123 |
+
|
124 |
Answer:
|
125 |
"""
|
126 |
|
127 |
prompt = ChatPromptTemplate.from_template(template)
|
128 |
|
129 |
+
# Create the RAG chain with chat history
|
130 |
+
def create_rag_chain(chat_history: str):
|
131 |
+
chain = (
|
132 |
+
{
|
133 |
+
"context": retriever,
|
134 |
+
"question": RunnablePassthrough(),
|
135 |
+
"chat_history": lambda x: chat_history
|
136 |
+
}
|
137 |
+
| prompt
|
138 |
+
| llm
|
139 |
+
| StrOutputParser()
|
140 |
+
)
|
141 |
+
return chain
|
142 |
+
|
143 |
+
# Initialize chat history
|
144 |
+
chat_history = ChatHistory()
|
145 |
|
146 |
# Gradio Function
|
147 |
+
def ask_question_gradio(question, history: gr.Chatbot) -> Tuple[str, gr.Chatbot]:
|
148 |
try:
|
149 |
+
# Add user question to chat history
|
150 |
+
chat_history.add_message("User", question)
|
151 |
+
|
152 |
+
# Get formatted history
|
153 |
+
formatted_history = chat_history.get_formatted_history()
|
154 |
+
|
155 |
+
# Create chain with current chat history
|
156 |
+
rag_chain = create_rag_chain(formatted_history)
|
157 |
+
|
158 |
+
# Generate response
|
159 |
response = ""
|
160 |
for chunk in rag_chain.stream(question):
|
161 |
response += chunk
|
162 |
+
|
163 |
+
# Add assistant response to chat history
|
164 |
+
chat_history.add_message("Assistant", response)
|
165 |
+
|
166 |
+
# Update Gradio chat history
|
167 |
+
history.append((question, response))
|
168 |
+
|
169 |
+
return "", history
|
170 |
except Exception as e:
|
171 |
logger.error(f"Error during question processing: {e}")
|
172 |
+
return "", history + [("Error", "An error occurred. Please try again later.")]
|
173 |
+
|
174 |
+
def clear_chat():
|
175 |
+
chat_history.clear()
|
176 |
+
return None
|
177 |
|
178 |
# Gradio Interface
|
179 |
+
with gr.Blocks() as iface:
|
180 |
+
gr.Markdown("# Mawared HR Assistant")
|
181 |
+
gr.Markdown("Ask questions about the Mawared HR system, and this assistant will provide answers based on the available context and conversation history.")
|
182 |
+
|
183 |
+
chatbot = gr.Chatbot(
|
184 |
+
height=400,
|
185 |
+
show_label=False,
|
186 |
+
)
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
question_input = gr.Textbox(
|
190 |
+
label="Ask a question:",
|
191 |
+
placeholder="Type your question here...",
|
192 |
+
scale=9
|
193 |
+
)
|
194 |
+
clear_button = gr.Button("Clear Chat", scale=1)
|
195 |
+
|
196 |
+
question_input.submit(
|
197 |
+
ask_question_gradio,
|
198 |
+
inputs=[question_input, chatbot],
|
199 |
+
outputs=[question_input, chatbot]
|
200 |
+
)
|
201 |
+
|
202 |
+
clear_button.click(
|
203 |
+
lambda: (None, None),
|
204 |
+
outputs=[chatbot, question_input],
|
205 |
+
_js="() => { window.location.reload(); }"
|
206 |
+
)
|
207 |
|
208 |
# Launch the Gradio App
|
209 |
if __name__ == "__main__":
|