Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,8 @@ from datetime import datetime
|
|
15 |
from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
|
16 |
from langchain_huggingface.llms import HuggingFacePipeline
|
17 |
import spaces
|
|
|
|
|
18 |
|
19 |
|
20 |
# Configure logging
|
@@ -35,7 +37,7 @@ class ChatHistory:
|
|
35 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
36 |
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
|
37 |
|
38 |
-
def get_formatted_history(self, max_messages: int =
|
39 |
"""Returns the most recent conversation history formatted as a string"""
|
40 |
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
|
41 |
formatted_history = "\n".join([
|
@@ -99,7 +101,7 @@ db = Qdrant(
|
|
99 |
# Create retriever
|
100 |
retriever = db.as_retriever(
|
101 |
search_type="similarity",
|
102 |
-
search_kwargs={"k":
|
103 |
)
|
104 |
|
105 |
|
@@ -117,14 +119,11 @@ retriever = db.as_retriever(
|
|
117 |
# timeout=None
|
118 |
|
119 |
# )
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
temperature=0,
|
126 |
-
huggingfacehub_api_token=HF_TOKEN,
|
127 |
-
)
|
128 |
|
129 |
|
130 |
|
|
|
15 |
from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
|
16 |
from langchain_huggingface.llms import HuggingFacePipeline
|
17 |
import spaces
|
18 |
+
from langchain_huggingface.llms import HuggingFacePipeline
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
20 |
|
21 |
|
22 |
# Configure logging
|
|
|
37 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
38 |
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
|
39 |
|
40 |
+
def get_formatted_history(self, max_messages: int = 10) -> str:
|
41 |
"""Returns the most recent conversation history formatted as a string"""
|
42 |
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
|
43 |
formatted_history = "\n".join([
|
|
|
101 |
# Create retriever
|
102 |
retriever = db.as_retriever(
|
103 |
search_type="similarity",
|
104 |
+
search_kwargs={"k": 3}
|
105 |
)
|
106 |
|
107 |
|
|
|
119 |
# timeout=None
|
120 |
|
121 |
# )
|
122 |
+
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
124 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
125 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=8192 )
|
126 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
|