Daemontatox commited on
Commit
bbc9fae
·
verified ·
1 Parent(s): 9c4781b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -15,6 +15,8 @@ from datetime import datetime
15
  from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
16
  from langchain_huggingface.llms import HuggingFacePipeline
17
  import spaces
 
 
18
 
19
 
20
  # Configure logging
@@ -35,7 +37,7 @@ class ChatHistory:
35
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
36
  self.messages.append(Message(role=role, content=content, timestamp=timestamp))
37
 
38
- def get_formatted_history(self, max_messages: int = 5) -> str:
39
  """Returns the most recent conversation history formatted as a string"""
40
  recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
41
  formatted_history = "\n".join([
@@ -99,7 +101,7 @@ db = Qdrant(
99
  # Create retriever
100
  retriever = db.as_retriever(
101
  search_type="similarity",
102
- search_kwargs={"k": 5}
103
  )
104
 
105
 
@@ -117,14 +119,11 @@ retriever = db.as_retriever(
117
  # timeout=None
118
 
119
  # )
120
- repo_id = "CohereForAI/c4ai-command-r7b-12-2024"
121
-
122
- llm = HuggingFaceEndpoint(
123
- repo_id=repo_id,
124
- max_length=8192,
125
- temperature=0,
126
- huggingfacehub_api_token=HF_TOKEN,
127
- )
128
 
129
 
130
 
 
15
  from transformers import AutoTokenizer, AutoModelForCausalLM ,pipeline
16
  from langchain_huggingface.llms import HuggingFacePipeline
17
  import spaces
18
+ from langchain_huggingface.llms import HuggingFacePipeline
19
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
20
 
21
 
22
  # Configure logging
 
37
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
38
  self.messages.append(Message(role=role, content=content, timestamp=timestamp))
39
 
40
+ def get_formatted_history(self, max_messages: int = 10) -> str:
41
  """Returns the most recent conversation history formatted as a string"""
42
  recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
43
  formatted_history = "\n".join([
 
101
  # Create retriever
102
  retriever = db.as_retriever(
103
  search_type="similarity",
104
+ search_kwargs={"k": 3}
105
  )
106
 
107
 
 
119
  # timeout=None
120
 
121
  # )
122
+ model_id = "CohereForAI/c4ai-command-r7b-12-2024"
123
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
124
+ model = AutoModelForCausalLM.from_pretrained(model_id)
125
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=8192 )
126
+ llm = HuggingFacePipeline(pipeline=pipe)
 
 
 
127
 
128
 
129