Spaces:
Running
Running
File size: 37,398 Bytes
94bcb53 69437e4 3efb770 94bcb53 3efb770 94bcb53 69437e4 3efb770 94bcb53 0d37fc6 3cb4bf6 c279058 97e6312 91a26fe a404305 582e970 e5593a5 90bcaf4 70b1f1d d8ef618 90bcaf4 94bcb53 69437e4 94bcb53 69437e4 36f266f 69437e4 3a9e805 609e5c9 69437e4 94bcb53 609e5c9 94bcb53 3a9e805 94bcb53 69437e4 3a9e805 36f266f 609e5c9 69437e4 94bcb53 69437e4 3efb770 69437e4 94bcb53 69437e4 94bcb53 69437e4 94bcb53 69437e4 94bcb53 c6a9793 69437e4 94bcb53 69437e4 4937ac7 94bcb53 69437e4 94bcb53 4937ac7 69437e4 3efb770 94bcb53 3efb770 94bcb53 3efb770 94bcb53 3efb770 69437e4 94bcb53 3efb770 94bcb53 3efb770 e00c04d 94bcb53 3efb770 94bcb53 3efb770 94bcb53 3efb770 94bcb53 3efb770 94bcb53 3efb770 94bcb53 3efb770 4937ac7 3efb770 4937ac7 3efb770 94bcb53 3efb770 94bcb53 3efb770 c56b33e 3efb770 b61d487 3efb770 b2fd468 3efb770 94bcb53 3efb770 90cb3d2 69437e4 94bcb53 69437e4 94bcb53 69437e4 94bcb53 69437e4 3efb770 94bcb53 69437e4 94bcb53 3efb770 69437e4 3efb770 4937ac7 94bcb53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile
import sys
# --------------------------------------------------------------------
# PART 1: TINY DATA + PLOTS
# --------------------------------------------------------------------
# This dataframe is your “tiny” version of model performance data.
# Used for plotting & demonstration in the Gradio app.
data_full = [
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co./CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co./djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co./CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co./CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co./CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co./CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co./CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
['CultriX/SeQwence-14Bv1', 'https://huggingface.co./CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
['CultriX/SeQwential-14B-v1', 'https://huggingface.co./CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co./CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co./CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.43, 0.7646],
['CultriX/Qwexit-2.5-14B-2024', 'https://huggingface.co./CultriX/Qwexit-2.5-14B-2024', 0.7253, 0.8174, 0.7456, 0.6688, 0.5300, 0.7027],
['CultriX/Qwen2.5-14B-BrocaV9', 'https://huggingface.co./CultriX/Qwen2.5-14B-BrocaV9', 0.7432, 0.8307, 0.7467, 0.6221, 0.5000, 0.7623],
['CultriX/Qwen2.5-14B-partialmergept1', 'https://huggingface.co./CultriX/Qwen2.5-14B-partialmergept1', 0.7389, 0.8370, 0.7451, 0.6715, 0.5700, 0.7308],
['CultriX/Qwen2.5-14B-partialmergept2', 'https://huggingface.co./CultriX/Qwen2.5-14B-partialmergept2', 0.7300, 0.8428, 0.7371, 0.5944, 0.4200, 0.7581],
['CultriX/model', 'https://huggingface.co./CultriX/model', 0.7010, 0.8320, 0.7194, 0.6158, 0.4700, 0.7385],
['CultriX/Qwen2.5-14B-BrocaFinal', 'https://huggingface.co./CultriX/Qwen2.5-14B-BrocaFinal', 0.6265, 0.7688, 0.7007, 0.7035, 0.5100, 0.7218],
['CultriX/Qwen2.5-14B-Hyperionv1', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv1', 0.7300, 0.8477, 0.7448, 0.6063, 0.4400, 0.7651],
['CultriX/Qwen2.5-14B-Hyperionv3', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv3', 0.7445, 0.8414, 0.7458, 0.6371, 0.4900, 0.7543],
['sometimesanotion/Lamarck-14B-v0.6', 'https://hf.xwall.us.kg.m/sometimesanotion/Lamarck-14B-v0.6', 0.7446, 0.8294, 0.7368, 0.6008, 0.4300, 0.7423],
['CultriX/Qwen2.5-14B-Hyper', 'https://hf.xwall.us.kg.m/CultriX/Qwen2.5-14B-Hyper', 0.7372, 0.8411, 0.7424, 0.5830, 0.4400, 0.7792],
['CultriX/Qwen2.5-14B-Hyperionv4', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv4', 0.7305, 0.8359, 0.7454, 0.5827, 0.4600, 0.7797],
['CultriX/Qwen2.5-14B-Hyperionv5', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv5', 0.7458, 0.8290, 0.7508, 0.6228, 0.5200, 0.7540],
['CultriX/Qwen2.5-14B-Hyperionv6', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv6', 0.7430, 0.8308, 0.7353, 0.6184, 0.4500, 0.7665],
['CultriX/Qwen2.5-14B-Hyperionv7', 'https://huggingface.co./CultriX/Qwen2.5-14B-Hyperionv7', 0.7412, 0.8287, 0.7508, 0.6208, 0.4800, 0.7532],
]
columns = [
"Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"
]
df_full = pd.DataFrame(data_full, columns=columns)
def plot_average_scores():
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
plt.figure(figsize=(14, 10))
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
plt.title("Average Performance of Models Across Tasks", fontsize=16)
plt.xlabel("Average Score", fontsize=14)
plt.ylabel("Model Configuration", fontsize=14)
plt.gca().invert_yaxis()
plt.grid(axis='x', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_performance():
df_full_melted = df_full.melt(
id_vars=["Model Configuration", "Model Link"],
var_name="Task", value_name="Score"
)
plt.figure(figsize=(16, 12))
for model in df_full["Model Configuration"]:
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
plt.title("Performance of All Models Across Tasks", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.xticks(rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_specific_top_models():
top_models = df_full.iloc[:, 2:].idxmax()
top_scores = df_full.iloc[:, 2:].max()
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
plt.figure(figsize=(14, 8))
plt.bar(results["Task"], results["Score"])
plt.title("Task-Specific Top Models", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_heatmap():
# Add a column for the total scores across all tasks
df_full["Total Scores"] = df_full.iloc[:, 2:].sum(axis=1)
# Normalize each column individually for consistent coloring
normalized_data = df_full.iloc[:, 2:].apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
plt.figure(figsize=(14, 10))
sns.heatmap(
normalized_data,
annot=df_full.iloc[:, 2:], # Show actual values in annotations
cmap="YlGnBu",
xticklabels=list(columns[2:]) + ["Total Scores"],
yticklabels=df_full["Model Configuration"]
)
plt.title("Performance Heatmap", fontsize=16)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def scrape_mergekit_config(model_name):
"""
For the *tiny* table’s model links.
Scrapes <pre> tags on the huggingface model page to find a YAML config.
"""
df_row = df_full.loc[df_full["Model Configuration"] == model_name]
if df_row.empty:
return f"No data found for model {model_name}."
model_link = df_row["Model Link"].values[0]
response = requests.get(model_link)
if response.status_code != 200:
return f"Failed to fetch model page for {model_name}. Please check the link."
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
if yaml_config:
return yaml_config.text.strip()
return f"No YAML configuration found for {model_name}."
def download_yaml(yaml_content, model_name):
"""
Let users download the scraped YAML if it exists.
"""
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
return None
filename = f"{model_name.replace('/', '_')}_config.yaml"
return gr.File(value=yaml_content.encode(), filename=filename)
def scrape_model_page(model_url):
"""
Used for the "Live Scraping" text box in the Gradio UI.
"""
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
except Exception as e:
return f"Error: {str(e)}"
def display_scraped_model_data(model_url):
"""
Helper for the "Live Scraping Features" section of the Gradio app.
"""
return scrape_model_page(model_url)
def download_all_data():
"""
Builds and returns a zip of:
- the CSV of your 'tiny' data,
- four plots (average performance, task performance, top models, heatmap),
- any YAML configurations for the 'tiny' table's models (if found).
"""
import io
csv_buffer = io.StringIO()
df_full.to_csv(csv_buffer, index=False)
csv_data = csv_buffer.getvalue().encode('utf-8')
average_plot_pil, average_plot_name = plot_average_scores()
task_plot_pil, task_plot_name = plot_task_performance()
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
plot_dict = {
"average_performance": (average_plot_pil, average_plot_name),
"task_performance": (task_plot_pil, task_plot_name),
"top_models": (top_models_plot_pil, top_models_plot_name),
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
}
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zf:
zf.writestr("model_scores.csv", csv_data)
# Add the images
for name, (pil_image, filename) in plot_dict.items():
image_bytes = io.BytesIO()
pil_image.save(image_bytes, format='PNG')
image_bytes.seek(0)
zf.writestr(filename, image_bytes.read())
# Also try scraping each model in the *tiny* dataset for a YAML config
for model_name in df_full["Model Configuration"].to_list():
yaml_content = scrape_mergekit_config(model_name)
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
zip_buffer.seek(0)
return zip_buffer, "analysis_data.zip"
# --------------------------------------------------------------------
# PART 2: THE "DATA START" SNIPPET (RANKS 44–105) + Parser
# --------------------------------------------------------------------
# This is your larger dataset, rank = 44..105
benchmark_data = [
{
"rank": 44,
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
"scores": {
"average": 40.10,
"IFEval": 72.57,
"BBH": 48.58,
"MATH": 34.44,
"GPQA": 17.34,
"MUSR": 19.39,
"MMLU-PRO": 48.26
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
"known_config": {
"models": [
{"model": "CultriX/SeQwence-14Bv1"},
{"model": "allknowingroger/Qwenslerp5-14B"}
],
"merge_method": "slerp",
"base_model": "CultriX/SeQwence-14Bv1",
"dtype": "bfloat16",
"parameters": {
"t": [0, 0.5, 1, 0.5, 0]
}
}
},
{
"rank": 45,
"name": "sthenno-com/miscii-14b-1225",
"scores": {
"average": 40.08,
"IFEval": 78.78,
"BBH": 50.91,
"MATH": 31.57,
"GPQA": 17.00,
"MUSR": 14.77,
"MMLU-PRO": 47.46
},
"hf_url": "https://huggingface.co./sthenno-com/miscii-14b-1225",
"known_config": None
},
{
"rank": 46,
"name": "djuna/Q2.5-Veltha-14B-0.5",
"scores": {
"average": 39.96,
"IFEval": 77.96,
"BBH": 50.32,
"MATH": 33.84,
"GPQA": 15.77,
"MUSR": 14.17,
"MMLU-PRO": 47.72
},
"hf_url": "https://huggingface.co./djuna/Q2.5-Veltha-14B-0.5",
"known_config": None
},
{
"rank": 48,
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock",
"scores": {
"average": 39.81,
"IFEval": 71.62,
"BBH": 48.76,
"MATH": 33.99,
"GPQA": 17.34,
"MUSR": 19.23,
"MMLU-PRO": 47.95
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock",
"known_config": None
},
{
"rank": 50,
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01",
"scores": {
"average": 39.46,
"IFEval": 68.72,
"BBH": 47.71,
"MATH": 35.05,
"GPQA": 18.23,
"MUSR": 19.56,
"MMLU-PRO": 47.50
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01",
"known_config": None
},
{
"rank": 52,
"name": "arcee-ai/Virtuoso-Small",
"scores": {
"average": 39.43,
"IFEval": 79.35,
"BBH": 50.40,
"MATH": 34.29,
"GPQA": 11.52,
"MUSR": 14.44,
"MMLU-PRO": 46.57
},
"hf_url": "https://huggingface.co./arcee-ai/Virtuoso-Small",
"known_config": None
},
{
"rank": 54,
"name": "sometimesanotion/Qwentinuum-14B-v6",
"scores": {
"average": 39.23,
"IFEval": 63.04,
"BBH": 50.23,
"MATH": 33.84,
"GPQA": 18.23,
"MUSR": 21.18,
"MMLU-PRO": 48.89
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v6",
"known_config": None
},
{
"rank": 55,
"name": "djuna/Q2.5-Veltha-14B",
"scores": {
"average": 39.21,
"IFEval": 82.92,
"BBH": 49.75,
"MATH": 28.02,
"GPQA": 14.54,
"MUSR": 12.26,
"MMLU-PRO": 47.76
},
"hf_url": "https://huggingface.co./djuna/Q2.5-Veltha-14B",
"known_config": None
},
{
"rank": 57,
"name": "allknowingroger/QwenSlerp6-14B",
"scores": {
"average": 39.02,
"IFEval": 68.67,
"BBH": 47.59,
"MATH": 34.14,
"GPQA": 16.44,
"MUSR": 18.32,
"MMLU-PRO": 48.95
},
"hf_url": "https://huggingface.co./allknowingroger/QwenSlerp6-14B",
"known_config": None
},
{
"rank": 58,
"name": "allknowingroger/QwenSlerp5-14B",
"scores": {
"average": 38.94,
"IFEval": 71.19,
"BBH": 47.39,
"MATH": 33.16,
"GPQA": 15.32,
"MUSR": 17.81,
"MMLU-PRO": 48.78
},
"hf_url": "https://huggingface.co./allknowingroger/QwenSlerp5-14B",
"known_config": None
},
{
"rank": 59,
"name": "sometimesanotion/Qwentinuum-14B-v5",
"scores": {
"average": 38.87,
"IFEval": 62.86,
"BBH": 50.28,
"MATH": 31.57,
"GPQA": 18.34,
"MUSR": 21.09,
"MMLU-PRO": 49.09
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v5",
"known_config": None
},
{
"rank": 60,
"name": "sometimesanotion/Qwenvergence-14B-v6-Prose",
"scores": {
"average": 38.82,
"IFEval": 59.90,
"BBH": 50.12,
"MATH": 34.89,
"GPQA": 18.46,
"MUSR": 21.02,
"MMLU-PRO": 48.56
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwenvergence-14B-v6-Prose",
"known_config": None
},
{
"rank": 61,
"name": "CultriX/Qwen2.5-14B-Brocav3",
"scores": {
"average": 38.76,
"IFEval": 69.52,
"BBH": 49.05,
"MATH": 32.25,
"GPQA": 14.54,
"MUSR": 19.25,
"MMLU-PRO": 47.97
},
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Brocav3",
"known_config": None
},
{
"rank": 62,
"name": "sometimesanotion/Qwentinuum-14B-v7",
"scores": {
"average": 38.76,
"IFEval": 61.09,
"BBH": 50.35,
"MATH": 33.38,
"GPQA": 18.79,
"MUSR": 19.95,
"MMLU-PRO": 49.00
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v7",
"known_config": None
},
{
"rank": 64,
"name": "sometimesanotion/Qwentinuum-14B-v3",
"scores": {
"average": 38.74,
"IFEval": 61.58,
"BBH": 50.04,
"MATH": 32.85,
"GPQA": 18.34,
"MUSR": 20.62,
"MMLU-PRO": 49.03
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v3",
"known_config": None
},
{
"rank": 65,
"name": "allura-org/TQ2.5-14B-Aletheia-v1",
"scores": {
"average": 38.74,
"IFEval": 75.30,
"BBH": 50.88,
"MATH": 29.53,
"GPQA": 14.99,
"MUSR": 14.61,
"MMLU-PRO": 47.12
},
"hf_url": "https://huggingface.co./allura-org/TQ2.5-14B-Aletheia-v1",
"known_config": None
},
{
"rank": 66,
"name": "qingy2024/Fusion4-14B-Instruct",
"scores": {
"average": 38.73,
"IFEval": 76.49,
"BBH": 50.70,
"MATH": 33.91,
"GPQA": 10.74,
"MUSR": 13.97,
"MMLU-PRO": 46.60
},
"hf_url": "https://huggingface.co./qingy2024/Fusion4-14B-Instruct",
"known_config": None
},
{
"rank": 68,
"name": "CultriX/Qwen2.5-14B-Brocav7",
"scores": {
"average": 38.52,
"IFEval": 67.24,
"BBH": 48.91,
"MATH": 31.87,
"GPQA": 15.66,
"MUSR": 20.15,
"MMLU-PRO": 47.31
},
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Brocav7",
"known_config": None
},
{
"rank": 71,
"name": "sometimesanotion/Qwentinuum-14B-v6-Prose",
"scores": {
"average": 38.46,
"IFEval": 56.43,
"BBH": 50.14,
"MATH": 35.57,
"GPQA": 18.46,
"MUSR": 21.34,
"MMLU-PRO": 48.80
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v6-Prose",
"known_config": None
},
{
"rank": 76,
"name": "CultriX/Qwen2.5-14B-Brocav6",
"scores": {
"average": 38.32,
"IFEval": 69.95,
"BBH": 47.82,
"MATH": 29.61,
"GPQA": 15.66,
"MUSR": 18.88,
"MMLU-PRO": 47.99
},
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Brocav6",
"known_config": None
},
{
"rank": 80,
"name": "CultriX/SeQwence-14Bv1",
"scores": {
"average": 38.20,
"IFEval": 66.78,
"BBH": 47.19,
"MATH": 33.53,
"GPQA": 14.88,
"MUSR": 18.80,
"MMLU-PRO": 48.00
},
"hf_url": "https://huggingface.co./CultriX/SeQwence-14Bv1",
"known_config": None
},
{
"rank": 85,
"name": "sometimesanotion/Qwentinuum-14B-v013",
"scores": {
"average": 37.96,
"IFEval": 67.11,
"BBH": 43.97,
"MATH": 33.01,
"GPQA": 14.32,
"MUSR": 24.99,
"MMLU-PRO": 44.34
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v013",
"known_config": None
},
{
"rank": 86,
"name": "CultriX/Qwen2.5-14B-Wernickev3",
"scores": {
"average": 37.94,
"IFEval": 70.48,
"BBH": 44.58,
"MATH": 32.78,
"GPQA": 14.99,
"MUSR": 18.69,
"MMLU-PRO": 46.13
},
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Wernickev3",
"known_config": None
},
{
"rank": 88,
"name": "allknowingroger/QwenSlerp4-14B",
"scores": {
"average": 37.80,
"IFEval": 63.28,
"BBH": 49.38,
"MATH": 30.97,
"GPQA": 16.33,
"MUSR": 17.59,
"MMLU-PRO": 49.28
},
"hf_url": "https://huggingface.co./allknowingroger/QwenSlerp4-14B",
"known_config": None
},
{
"rank": 89,
"name": "CultriX/Qwen2.5-14B-Broca",
"scores": {
"average": 37.72,
"IFEval": 56.04,
"BBH": 50.03,
"MATH": 34.59,
"GPQA": 18.23,
"MUSR": 18.95,
"MMLU-PRO": 48.49
},
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Broca",
"known_config": None
},
{
"rank": 90,
"name": "CultriX/Qwen2.5-14B-Emerged",
"scores": {
"average": 37.66,
"IFEval": 70.00,
"BBH": 45.93,
"MATH": 30.74,
"GPQA": 14.32,
"MUSR": 18.47,
"MMLU-PRO": 46.51
},
"hf_url": "https://huggingface.co./CultriX/Qwen2.5-14B-Emerged",
"known_config": None
},
{
"rank": 91,
"name": "sometimesanotion/Qwentinuum-14B-v8",
"scores": {
"average": 37.65,
"IFEval": 54.12,
"BBH": 50.11,
"MATH": 34.14,
"GPQA": 17.79,
"MUSR": 20.75,
"MMLU-PRO": 49.02
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwentinuum-14B-v8",
"known_config": None
},
{
"rank": 92,
"name": "qingy2024/Fusion-14B-Instruct",
"scores": {
"average": 37.64,
"IFEval": 72.60,
"BBH": 48.58,
"MATH": 30.97,
"GPQA": 13.98,
"MUSR": 14.81,
"MMLU-PRO": 44.93
},
"hf_url": "https://huggingface.co./qingy2024/Fusion-14B-Instruct",
"known_config": None
},
{
"rank": 94,
"name": "CultriX/Qwestion-14B",
"scores": {
"average": 37.63,
"IFEval": 63.18,
"BBH": 48.76,
"MATH": 31.72,
"GPQA": 15.77,
"MUSR": 17.22,
"MMLU-PRO": 49.14
},
"hf_url": "https://huggingface.co./CultriX/Qwestion-14B",
"known_config": None
},
{
"rank": 99,
"name": "sometimesanotion/Qwenvergence-14B-v3-Prose",
"scores": {
"average": 37.37,
"IFEval": 49.18,
"BBH": 49.80,
"MATH": 35.57,
"GPQA": 19.35,
"MUSR": 21.77,
"MMLU-PRO": 48.55
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwenvergence-14B-v3-Prose",
"known_config": None
},
{
"rank": 102,
"name": "CultriX/SeQwence-14B-v5",
"scores": {
"average": 37.27,
"IFEval": 59.20,
"BBH": 50.00,
"MATH": 31.04,
"GPQA": 16.00,
"MUSR": 18.33,
"MMLU-PRO": 49.05
},
"hf_url": "https://huggingface.co./CultriX/SeQwence-14B-v5",
"known_config": None
},
{
"rank": 103,
"name": "sometimesanotion/Qwen-14B-ProseStock-v4",
"scores": {
"average": 37.23,
"IFEval": 49.42,
"BBH": 49.54,
"MATH": 35.50,
"GPQA": 18.46,
"MUSR": 21.70,
"MMLU-PRO": 48.74
},
"hf_url": "https://huggingface.co./sometimesanotion/Qwen-14B-ProseStock-v4",
"known_config": None
},
{
"rank": 104,
"name": "sometimesanotion/IF-reasoning-experiment-40",
"scores": {
"average": 37.21,
"IFEval": 63.30,
"BBH": 44.31,
"MATH": 27.72,
"GPQA": 17.34,
"MUSR": 25.86,
"MMLU-PRO": 44.72
},
"hf_url": "https://huggingface.co./sometimesanotion/IF-reasoning-experiment-40",
"known_config": None
},
{
"rank": 105,
"name": "CultriX/SeQwence-14B-EvolMerge",
"scores": {
"average": 37.20,
"IFEval": 53.82,
"BBH": 50.78,
"MATH": 31.80,
"GPQA": 17.45,
"MUSR": 20.26,
"MMLU-PRO": 49.10
},
"hf_url": "https://huggingface.co./CultriX/SeQwence-14B-EvolMerge",
"known_config": None
}
]
def snippet_scrape_model_page(url):
"""
Equivalent scraping function for the larger dataset
to look for <pre> YAML and a .metadata section.
"""
try:
response = requests.get(url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return {
"yaml_configuration": yaml_text,
"metadata": metadata_text
}
except Exception as e:
return f"Error: {str(e)}"
def snippet_print_benchmark_and_config_info(model_info):
"""
Prints an overview for each model in the rank=44..105 dataset.
If known_config is not None, prints it. Otherwise attempts to scrape.
"""
print(f"---\nModel Rank: {model_info['rank']}")
print(f"Model Name: {model_info['name']}")
print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}")
print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}")
print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}")
print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
# If there's a known_config, print it in YAML form and stop.
if model_info["known_config"] is not None:
print("###")
print("models:")
for m in model_info["known_config"]["models"]:
print(f" - model: {m['model']}")
print(f"merge_method: {model_info['known_config']['merge_method']}")
print(f"base_model: {model_info['known_config']['base_model']}")
print(f"dtype: {model_info['known_config']['dtype']}")
print("parameters:")
t_vals = model_info["known_config"]["parameters"]["t"]
print(f" t: {t_vals} # V shaped curve: Hermes for input & output, WizardMath in the middle layers")
print("###")
return
# Otherwise, do scraping:
scraped = snippet_scrape_model_page(model_info["hf_url"])
if isinstance(scraped, str):
# Means it's an error string or something
print("(No MergeKit configuration found or scraping error.)")
print(scraped)
return
else:
# It's presumably a dict
if "No YAML configuration found." in scraped["yaml_configuration"]:
print("(No MergeKit configuration found.)\n")
print("You can try the following Python script to scrape the model page:\n")
print("#" * 70)
print(f'''import requests
from bs4 import BeautifulSoup
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return {{
"yaml_configuration": yaml_text,
"metadata": metadata_text
}}
except Exception as e:
return f"Error: {{str(e)}}"
if __name__ == "__main__":
model_url = "{model_info['hf_url']}"
result = scrape_model_page(model_url)
print(result)''')
print("#" * 70)
else:
# Found some YAML
print("###")
print(scraped["yaml_configuration"])
print("###")
def run_non_tiny_benchmarks():
"""
Captures the stdout from printing each model in benchmark_data (ranks 44..105),
returning the entire output as a single string for Gradio to display.
"""
old_stdout = sys.stdout
buffer = io.StringIO()
sys.stdout = buffer
for model in benchmark_data:
snippet_print_benchmark_and_config_info(model)
sys.stdout = old_stdout
return buffer.getvalue()
# --------------------------------------------------------------------
# PART 3: The Gradio App
# --------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
# The existing UI for the “tiny” data
with gr.Row():
btn1 = gr.Button("Show Average Performance")
img1 = gr.Image(type="pil", label="Average Performance Plot")
img1_download = gr.File(label="Download Average Performance")
btn1.click(plot_average_scores, outputs=[img1, img1_download])
with gr.Row():
btn2 = gr.Button("Show Task Performance")
img2 = gr.Image(type="pil", label="Task Performance Plot")
img2_download = gr.File(label="Download Task Performance")
btn2.click(plot_task_performance, outputs=[img2, img2_download])
with gr.Row():
btn3 = gr.Button("Task-Specific Top Models")
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
img3_download = gr.File(label="Download Top Models")
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
with gr.Row():
btn4 = gr.Button("Plot Performance Heatmap")
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
heatmap_download = gr.File(label="Download Heatmap")
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
# Scraping & YAML handling for the *tiny* table
with gr.Row():
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
with gr.Column():
scrape_btn = gr.Button("Scrape MergeKit Configuration")
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
with gr.Column():
save_yaml_btn = gr.Button("Save MergeKit Configuration")
yaml_download = gr.File(label="Download MergeKit Configuration")
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
# Download everything (CSV, plots, any found YAML)
with gr.Row():
download_all_btn = gr.Button("Download Everything")
all_downloads = gr.File(label="Download All Data")
download_all_btn.click(download_all_data, outputs=all_downloads)
# Live Scraping
gr.Markdown("## Live Scraping Features")
with gr.Row():
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co./<model>")
live_scrape_btn = gr.Button("Scrape Model Page")
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
# Non-Tiny Benchmarks
gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44–105)")
with gr.Row():
parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output)
demo.launch()
|