Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
# Comprehensive Model Performance Analysis
|
2 |
-
|
3 |
-
# Importing Required Libraries
|
4 |
import pandas as pd
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
@@ -13,8 +10,8 @@ import base64
|
|
13 |
import zipfile
|
14 |
from PIL import Image
|
15 |
from io import BytesIO
|
|
|
16 |
|
17 |
-
# Input Data
|
18 |
# Input data with links to Hugging Face repositories
|
19 |
data_full = [
|
20 |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
@@ -43,14 +40,17 @@ data_full = [
|
|
43 |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
44 |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
45 |
]
|
|
|
46 |
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
|
|
|
|
47 |
df_full = pd.DataFrame(data_full, columns=columns)
|
48 |
|
49 |
-
# Visualization and
|
50 |
-
# 1. Plot Average Scores
|
51 |
def plot_average_scores():
|
52 |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
53 |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
|
|
54 |
plt.figure(figsize=(12, 8))
|
55 |
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
56 |
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
@@ -59,15 +59,27 @@ def plot_average_scores():
|
|
59 |
plt.gca().invert_yaxis()
|
60 |
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
61 |
plt.tight_layout()
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
# 2. Plot Task Performance
|
65 |
def plot_task_performance():
|
66 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
|
|
67 |
plt.figure(figsize=(14, 10))
|
68 |
for model in df_full["Model Configuration"]:
|
69 |
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
70 |
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
|
|
71 |
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
72 |
plt.xlabel("Task", fontsize=14)
|
73 |
plt.ylabel("Score", fontsize=14)
|
@@ -75,13 +87,24 @@ def plot_task_performance():
|
|
75 |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
76 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
77 |
plt.tight_layout()
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# 3. Plot Task-Specific Top Models
|
81 |
def plot_task_specific_top_models():
|
82 |
top_models = df_full.iloc[:, 2:].idxmax()
|
83 |
top_scores = df_full.iloc[:, 2:].max()
|
|
|
84 |
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
|
|
85 |
plt.figure(figsize=(12, 6))
|
86 |
plt.bar(results["Task"], results["Score"])
|
87 |
plt.title("Task-Specific Top Models", fontsize=16)
|
@@ -89,68 +112,192 @@ def plot_task_specific_top_models():
|
|
89 |
plt.ylabel("Score", fontsize=14)
|
90 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
91 |
plt.tight_layout()
|
92 |
-
plt.show()
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def scrape_mergekit_config(model_name):
|
|
|
|
|
|
|
97 |
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
98 |
response = requests.get(model_link)
|
99 |
if response.status_code != 200:
|
100 |
return f"Failed to fetch model page for {model_name}. Please check the link."
|
|
|
101 |
soup = BeautifulSoup(response.text, "html.parser")
|
102 |
-
yaml_config = soup.find("pre")
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
# 2. Download All Data
|
106 |
def download_all_data():
|
|
|
107 |
csv_buffer = io.StringIO()
|
108 |
df_full.to_csv(csv_buffer, index=False)
|
109 |
csv_data = csv_buffer.getvalue().encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
zip_buffer = io.BytesIO()
|
112 |
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
113 |
zf.writestr("model_scores.csv", csv_data)
|
114 |
-
zip_buffer.seek(0)
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
return zip_buffer, "analysis_data.zip"
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
#
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
with gr.Blocks() as demo:
|
129 |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
130 |
|
131 |
with gr.Row():
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
with gr.Row():
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
|
141 |
with gr.Row():
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
with gr.Row():
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
with gr.Row():
|
152 |
download_all_btn = gr.Button("Download Everything")
|
153 |
all_downloads = gr.File(label="Download All Data")
|
154 |
download_all_btn.click(download_all_data, outputs=all_downloads)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import matplotlib.pyplot as plt
|
3 |
import seaborn as sns
|
|
|
10 |
import zipfile
|
11 |
from PIL import Image
|
12 |
from io import BytesIO
|
13 |
+
import tempfile
|
14 |
|
|
|
15 |
# Input data with links to Hugging Face repositories
|
16 |
data_full = [
|
17 |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
|
|
40 |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
41 |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
42 |
]
|
43 |
+
|
44 |
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
45 |
+
|
46 |
+
# Convert to DataFrame
|
47 |
df_full = pd.DataFrame(data_full, columns=columns)
|
48 |
|
49 |
+
# Visualization and analytics functions
|
|
|
50 |
def plot_average_scores():
|
51 |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
52 |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
53 |
+
|
54 |
plt.figure(figsize=(12, 8))
|
55 |
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
56 |
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
|
|
59 |
plt.gca().invert_yaxis()
|
60 |
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
61 |
plt.tight_layout()
|
62 |
+
|
63 |
+
img_buffer = io.BytesIO()
|
64 |
+
plt.savefig(img_buffer, format='png')
|
65 |
+
img_buffer.seek(0)
|
66 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
67 |
+
plt.close()
|
68 |
+
|
69 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
70 |
+
|
71 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
72 |
+
pil_image.save(temp_image_file.name)
|
73 |
+
return pil_image, temp_image_file.name
|
74 |
|
|
|
75 |
def plot_task_performance():
|
76 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
77 |
+
|
78 |
plt.figure(figsize=(14, 10))
|
79 |
for model in df_full["Model Configuration"]:
|
80 |
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
81 |
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
82 |
+
|
83 |
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
84 |
plt.xlabel("Task", fontsize=14)
|
85 |
plt.ylabel("Score", fontsize=14)
|
|
|
87 |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
88 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
89 |
plt.tight_layout()
|
90 |
+
|
91 |
+
img_buffer = io.BytesIO()
|
92 |
+
plt.savefig(img_buffer, format='png')
|
93 |
+
img_buffer.seek(0)
|
94 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
95 |
+
plt.close()
|
96 |
+
|
97 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
98 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
99 |
+
pil_image.save(temp_image_file.name)
|
100 |
+
return pil_image, temp_image_file.name
|
101 |
|
|
|
102 |
def plot_task_specific_top_models():
|
103 |
top_models = df_full.iloc[:, 2:].idxmax()
|
104 |
top_scores = df_full.iloc[:, 2:].max()
|
105 |
+
|
106 |
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
107 |
+
|
108 |
plt.figure(figsize=(12, 6))
|
109 |
plt.bar(results["Task"], results["Score"])
|
110 |
plt.title("Task-Specific Top Models", fontsize=16)
|
|
|
112 |
plt.ylabel("Score", fontsize=14)
|
113 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
114 |
plt.tight_layout()
|
|
|
115 |
|
116 |
+
img_buffer = io.BytesIO()
|
117 |
+
plt.savefig(img_buffer, format='png')
|
118 |
+
img_buffer.seek(0)
|
119 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
120 |
+
plt.close()
|
121 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
122 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
123 |
+
pil_image.save(temp_image_file.name)
|
124 |
+
return pil_image, temp_image_file.name
|
125 |
+
|
126 |
def scrape_mergekit_config(model_name):
|
127 |
+
"""
|
128 |
+
Scrapes the Hugging Face model page for YAML configuration.
|
129 |
+
"""
|
130 |
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
131 |
response = requests.get(model_link)
|
132 |
if response.status_code != 200:
|
133 |
return f"Failed to fetch model page for {model_name}. Please check the link."
|
134 |
+
|
135 |
soup = BeautifulSoup(response.text, "html.parser")
|
136 |
+
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
|
137 |
+
if yaml_config:
|
138 |
+
return yaml_config.text.strip()
|
139 |
+
return f"No YAML configuration found for {model_name}."
|
140 |
+
|
141 |
+
def plot_heatmap():
|
142 |
+
plt.figure(figsize=(12, 8))
|
143 |
+
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
144 |
+
plt.title("Performance Heatmap", fontsize=16)
|
145 |
+
plt.tight_layout()
|
146 |
+
|
147 |
+
img_buffer = io.BytesIO()
|
148 |
+
plt.savefig(img_buffer, format='png')
|
149 |
+
img_buffer.seek(0)
|
150 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
151 |
+
plt.close()
|
152 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
153 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
154 |
+
pil_image.save(temp_image_file.name)
|
155 |
+
return pil_image, temp_image_file.name
|
156 |
+
|
157 |
+
def download_yaml(yaml_content, model_name):
|
158 |
+
"""
|
159 |
+
Generates a downloadable link for the scraped YAML content.
|
160 |
+
"""
|
161 |
+
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
162 |
+
return None # Do not return a link if there's no config or a fetch error
|
163 |
+
|
164 |
+
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
165 |
+
return gr.File(value=yaml_content.encode(), filename=filename)
|
166 |
|
|
|
167 |
def download_all_data():
|
168 |
+
# Prepare data to download
|
169 |
csv_buffer = io.StringIO()
|
170 |
df_full.to_csv(csv_buffer, index=False)
|
171 |
csv_data = csv_buffer.getvalue().encode('utf-8')
|
172 |
+
|
173 |
+
# Prepare all plots
|
174 |
+
average_plot_pil, average_plot_name = plot_average_scores()
|
175 |
+
task_plot_pil, task_plot_name = plot_task_performance()
|
176 |
+
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
177 |
+
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
|
178 |
+
|
179 |
+
plot_dict = {
|
180 |
+
"average_performance": (average_plot_pil, average_plot_name),
|
181 |
+
"task_performance": (task_plot_pil, task_plot_name),
|
182 |
+
"top_models": (top_models_plot_pil, top_models_plot_name),
|
183 |
+
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
|
184 |
+
}
|
185 |
|
186 |
zip_buffer = io.BytesIO()
|
187 |
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
188 |
zf.writestr("model_scores.csv", csv_data)
|
|
|
189 |
|
190 |
+
for name, (pil_image, filename) in plot_dict.items():
|
191 |
+
image_bytes = io.BytesIO()
|
192 |
+
pil_image.save(image_bytes, format='PNG')
|
193 |
+
image_bytes.seek(0)
|
194 |
+
zf.writestr(filename, image_bytes.read())
|
195 |
+
|
196 |
+
for model_name in df_full["Model Configuration"].to_list():
|
197 |
+
yaml_content = scrape_mergekit_config(model_name)
|
198 |
+
if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
|
199 |
+
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
200 |
+
|
201 |
+
zip_buffer.seek(0)
|
202 |
+
|
203 |
return zip_buffer, "analysis_data.zip"
|
204 |
|
205 |
+
def scrape_model_page(model_url):
|
206 |
+
"""
|
207 |
+
Scrapes the Hugging Face model page for YAML configuration and other details.
|
208 |
+
"""
|
209 |
+
try:
|
210 |
+
# Fetch the model page
|
211 |
+
response = requests.get(model_url)
|
212 |
+
if response.status_code != 200:
|
213 |
+
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
214 |
+
|
215 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
216 |
|
217 |
+
# Extract YAML configuration (usually inside <pre> tags)
|
218 |
+
yaml_config = soup.find("pre")
|
219 |
+
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
220 |
+
|
221 |
+
# Extract additional metadata or performance (if available)
|
222 |
+
metadata_section = soup.find("div", class_="metadata")
|
223 |
+
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
224 |
+
|
225 |
+
# Return the scraped details
|
226 |
+
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
227 |
+
|
228 |
+
except Exception as e:
|
229 |
+
return f"Error: {str(e)}"
|
230 |
+
|
231 |
+
def display_scraped_model_data(model_url):
|
232 |
+
"""
|
233 |
+
Displays YAML configuration and metadata for a given model URL.
|
234 |
+
"""
|
235 |
+
return scrape_model_page(model_url)
|
236 |
+
|
237 |
+
|
238 |
+
# Gradio app
|
239 |
with gr.Blocks() as demo:
|
240 |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
241 |
|
242 |
with gr.Row():
|
243 |
+
with gr.Column(width=3):
|
244 |
+
btn1 = gr.Button("Show Average Performance")
|
245 |
+
with gr.Column(width=7):
|
246 |
+
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
247 |
+
with gr.Column(width=2):
|
248 |
+
img1_download = gr.File(label="Download Average Performance")
|
249 |
+
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
250 |
+
|
251 |
with gr.Row():
|
252 |
+
with gr.Column(width=3):
|
253 |
+
btn2 = gr.Button("Show Task Performance")
|
254 |
+
with gr.Column(width=7):
|
255 |
+
img2 = gr.Image(type="pil", label="Task Performance Plot")
|
256 |
+
with gr.Column(width=2):
|
257 |
+
img2_download = gr.File(label="Download Task Performance")
|
258 |
+
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
259 |
|
260 |
with gr.Row():
|
261 |
+
with gr.Column(width=3):
|
262 |
+
btn3 = gr.Button("Task-Specific Top Models")
|
263 |
+
with gr.Column(width=7):
|
264 |
+
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
|
265 |
+
with gr.Column(width=2):
|
266 |
+
img3_download = gr.File(label="Download Top Models")
|
267 |
+
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
268 |
+
|
269 |
+
with gr.Row():
|
270 |
+
with gr.Column(width=3):
|
271 |
+
btn4 = gr.Button("Plot Performance Heatmap")
|
272 |
+
with gr.Column(width=7):
|
273 |
+
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
|
274 |
+
with gr.Column(width=2):
|
275 |
+
heatmap_download = gr.File(label="Download Heatmap")
|
276 |
+
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
277 |
|
278 |
with gr.Row():
|
279 |
+
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
280 |
+
with gr.Column():
|
281 |
+
scrape_btn = gr.Button("Scrape MergeKit Configuration")
|
282 |
+
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
|
283 |
+
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
|
284 |
+
with gr.Column():
|
285 |
+
save_yaml_btn = gr.Button("Save MergeKit Configuration")
|
286 |
+
yaml_download = gr.File(label="Download MergeKit Configuration")
|
287 |
+
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
288 |
+
|
289 |
|
290 |
with gr.Row():
|
291 |
download_all_btn = gr.Button("Download Everything")
|
292 |
all_downloads = gr.File(label="Download All Data")
|
293 |
download_all_btn.click(download_all_data, outputs=all_downloads)
|
294 |
+
|
295 |
+
# Live scraping feature
|
296 |
+
gr.Markdown("## Live Scraping Features")
|
297 |
+
with gr.Row():
|
298 |
+
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
299 |
+
live_scrape_btn = gr.Button("Scrape Model Page")
|
300 |
+
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
301 |
+
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
302 |
|
303 |
demo.launch()
|