Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,192 @@ from PIL import Image
|
|
12 |
from io import BytesIO
|
13 |
import tempfile
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
data_full = [
|
17 |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
18 |
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
|
@@ -39,14 +224,10 @@ data_full = [
|
|
39 |
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
|
40 |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
41 |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
|
|
42 |
]
|
43 |
-
|
44 |
-
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
45 |
-
|
46 |
-
# Convert to DataFrame
|
47 |
df_full = pd.DataFrame(data_full, columns=columns)
|
48 |
|
49 |
-
# Visualization and analytics functions
|
50 |
def plot_average_scores():
|
51 |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
52 |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
@@ -67,7 +248,6 @@ def plot_average_scores():
|
|
67 |
plt.close()
|
68 |
|
69 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
70 |
-
|
71 |
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
72 |
pil_image.save(temp_image_file.name)
|
73 |
return pil_image, temp_image_file.name
|
@@ -123,24 +303,10 @@ def plot_task_specific_top_models():
|
|
123 |
pil_image.save(temp_image_file.name)
|
124 |
return pil_image, temp_image_file.name
|
125 |
|
126 |
-
def scrape_mergekit_config(model_name):
|
127 |
-
"""
|
128 |
-
Scrapes the Hugging Face model page for YAML configuration.
|
129 |
-
"""
|
130 |
-
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
131 |
-
response = requests.get(model_link)
|
132 |
-
if response.status_code != 200:
|
133 |
-
return f"Failed to fetch model page for {model_name}. Please check the link."
|
134 |
-
|
135 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
136 |
-
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
|
137 |
-
if yaml_config:
|
138 |
-
return yaml_config.text.strip()
|
139 |
-
return f"No YAML configuration found for {model_name}."
|
140 |
-
|
141 |
def plot_heatmap():
|
142 |
plt.figure(figsize=(14, 10))
|
143 |
-
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
|
|
|
144 |
plt.title("Performance Heatmap", fontsize=16)
|
145 |
plt.tight_layout()
|
146 |
|
@@ -154,23 +320,48 @@ def plot_heatmap():
|
|
154 |
pil_image.save(temp_image_file.name)
|
155 |
return pil_image, temp_image_file.name
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
def download_yaml(yaml_content, model_name):
|
158 |
-
"""
|
159 |
-
Generates a downloadable link for the scraped YAML content.
|
160 |
-
"""
|
161 |
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
162 |
-
return None
|
163 |
|
164 |
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
165 |
return gr.File(value=yaml_content.encode(), filename=filename)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
def download_all_data():
|
168 |
-
# Prepare data to download
|
169 |
csv_buffer = io.StringIO()
|
170 |
df_full.to_csv(csv_buffer, index=False)
|
171 |
csv_data = csv_buffer.getvalue().encode('utf-8')
|
172 |
|
173 |
-
# Prepare all plots
|
174 |
average_plot_pil, average_plot_name = plot_average_scores()
|
175 |
task_plot_pil, task_plot_name = plot_task_performance()
|
176 |
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
@@ -195,97 +386,75 @@ def download_all_data():
|
|
195 |
|
196 |
for model_name in df_full["Model Configuration"].to_list():
|
197 |
yaml_content = scrape_mergekit_config(model_name)
|
198 |
-
if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
|
199 |
-
|
200 |
|
201 |
zip_buffer.seek(0)
|
202 |
-
|
203 |
return zip_buffer, "analysis_data.zip"
|
204 |
|
205 |
-
def scrape_model_page(model_url):
|
206 |
-
"""
|
207 |
-
Scrapes the Hugging Face model page for YAML configuration and other details.
|
208 |
-
"""
|
209 |
-
try:
|
210 |
-
# Fetch the model page
|
211 |
-
response = requests.get(model_url)
|
212 |
-
if response.status_code != 200:
|
213 |
-
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
214 |
-
|
215 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
216 |
-
|
217 |
-
# Extract YAML configuration (usually inside <pre> tags)
|
218 |
-
yaml_config = soup.find("pre")
|
219 |
-
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
# Return the scraped details
|
226 |
-
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
227 |
|
228 |
-
except Exception as e:
|
229 |
-
return f"Error: {str(e)}"
|
230 |
-
|
231 |
-
def display_scraped_model_data(model_url):
|
232 |
-
"""
|
233 |
-
Displays YAML configuration and metadata for a given model URL.
|
234 |
-
"""
|
235 |
-
return scrape_model_page(model_url)
|
236 |
-
|
237 |
-
|
238 |
-
# Gradio app
|
239 |
with gr.Blocks() as demo:
|
240 |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
241 |
-
|
242 |
-
with gr.Row():
|
243 |
-
btn1 = gr.Button("Show Average Performance")
|
244 |
-
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
245 |
-
img1_download = gr.File(label="Download Average Performance")
|
246 |
-
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
247 |
-
|
248 |
-
with gr.Row():
|
249 |
-
btn2 = gr.Button("Show Task Performance")
|
250 |
-
img2 = gr.Image(type="pil", label="Task Performance Plot")
|
251 |
-
img2_download = gr.File(label="Download Task Performance")
|
252 |
-
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
253 |
-
|
254 |
-
with gr.Row():
|
255 |
-
btn3 = gr.Button("Task-Specific Top Models")
|
256 |
-
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
|
257 |
-
img3_download = gr.File(label="Download Top Models")
|
258 |
-
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
259 |
|
260 |
-
with gr.
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
live_scrape_btn = gr.Button("Scrape Model Page")
|
288 |
-
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
289 |
-
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
290 |
-
|
291 |
-
demo.launch()
|
|
|
12 |
from io import BytesIO
|
13 |
import tempfile
|
14 |
|
15 |
+
### ----------------------------------------------------------------
|
16 |
+
### PART 1: "PARSED BENCHMARK RESULTS" SECTION
|
17 |
+
### ----------------------------------------------------------------
|
18 |
+
|
19 |
+
# This text is the exact content from your "great results" output.
|
20 |
+
# If you want to dynamically run the script again to produce the text each time,
|
21 |
+
# you can integrate the script's logic. But here, we simply store the final output.
|
22 |
+
PARSED_BENCHMARK_RESULTS = """\
|
23 |
+
### RESULTS ###
|
24 |
+
---
|
25 |
+
Model Rank: 44
|
26 |
+
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3
|
27 |
+
Model average score across benchmarks in %: 40.1
|
28 |
+
Models average score on IFEval benchmarks in %: 72.57
|
29 |
+
Models average score on BBH benchmarks in %: 48.58
|
30 |
+
Models average score on MATH benchmarks in %: 34.44
|
31 |
+
Models average score in GPQA benchmarks in %: 17.34
|
32 |
+
Models average score in MUSR benchmarks in %: 19.39
|
33 |
+
Models average score in MMLU-PRO benchmarks in %: 48.26
|
34 |
+
###
|
35 |
+
models:
|
36 |
+
- model: CultriX/SeQwence-14Bv1
|
37 |
+
- model: allknowingroger/Qwenslerp5-14B
|
38 |
+
merge_method: slerp
|
39 |
+
base_model: CultriX/SeQwence-14Bv1
|
40 |
+
dtype: bfloat16
|
41 |
+
parameters:
|
42 |
+
t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers
|
43 |
+
###
|
44 |
+
---
|
45 |
+
Model Rank: 45
|
46 |
+
Model Name: sthenno-com/miscii-14b-1225
|
47 |
+
Model average score across benchmarks in %: 40.08
|
48 |
+
Models average score on IFEval benchmarks in %: 78.78
|
49 |
+
Models average score on BBH benchmarks in %: 50.91
|
50 |
+
Models average score on MATH benchmarks in %: 31.57
|
51 |
+
Models average score in GPQA benchmarks in %: 17.0
|
52 |
+
Models average score in MUSR benchmarks in %: 14.77
|
53 |
+
Models average score in MMLU-PRO benchmarks in %: 47.46
|
54 |
+
###
|
55 |
+
tokenizer_source: "base"
|
56 |
+
chat_template: "chatml"
|
57 |
+
|
58 |
+
merge_method: ties
|
59 |
+
dtype: bfloat16
|
60 |
+
|
61 |
+
parameters:
|
62 |
+
normalize: true
|
63 |
+
|
64 |
+
base_model: sthenno-com/miscii-14b-1028
|
65 |
+
|
66 |
+
models:
|
67 |
+
- model: sthenno-com/miscii-14b-1028
|
68 |
+
parameters:
|
69 |
+
weight: 1
|
70 |
+
density: 0.5
|
71 |
+
- model: sthenno/miscii-1218
|
72 |
+
parameters:
|
73 |
+
weight: 1
|
74 |
+
density: 0.5
|
75 |
+
- model: sthenno/exp-002
|
76 |
+
parameters:
|
77 |
+
weight: 0.9
|
78 |
+
density: 0.5
|
79 |
+
- model: sthenno/miscii-1218
|
80 |
+
parameters:
|
81 |
+
weight: 0.6
|
82 |
+
density: 0.5
|
83 |
+
###
|
84 |
+
---
|
85 |
+
Model Rank: 46
|
86 |
+
Model Name: djuna/Q2.5-Veltha-14B-0.5
|
87 |
+
Model average score across benchmarks in %: 39.96
|
88 |
+
Models average score on IFEval benchmarks in %: 77.96
|
89 |
+
Models average score on BBH benchmarks in %: 50.32
|
90 |
+
Models average score on MATH benchmarks in %: 33.84
|
91 |
+
Models average score in GPQA benchmarks in %: 15.77
|
92 |
+
Models average score in MUSR benchmarks in %: 14.17
|
93 |
+
Models average score in MMLU-PRO benchmarks in %: 47.72
|
94 |
+
###
|
95 |
+
merge_method: della_linear
|
96 |
+
dtype: float32
|
97 |
+
out_dtype: bfloat16
|
98 |
+
parameters:
|
99 |
+
epsilon: 0.04
|
100 |
+
lambda: 1.05
|
101 |
+
normalize: true
|
102 |
+
base_model: arcee-ai/SuperNova-Medius
|
103 |
+
tokenizer_source: arcee-ai/SuperNova-Medius
|
104 |
+
models:
|
105 |
+
- model: arcee-ai/SuperNova-Medius
|
106 |
+
parameters:
|
107 |
+
weight: 10
|
108 |
+
density: 1
|
109 |
+
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
|
110 |
+
parameters:
|
111 |
+
weight: 7
|
112 |
+
density: 0.5
|
113 |
+
- model: v000000/Qwen2.5-Lumen-14B
|
114 |
+
parameters:
|
115 |
+
weight: 7
|
116 |
+
density: 0.4
|
117 |
+
- model: allura-org/TQ2.5-14B-Aletheia-v1
|
118 |
+
parameters:
|
119 |
+
weight: 8
|
120 |
+
density: 0.4
|
121 |
+
- model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
|
122 |
+
parameters:
|
123 |
+
weight: 8
|
124 |
+
density: 0.45
|
125 |
+
###
|
126 |
+
---
|
127 |
+
Model Rank: 48
|
128 |
+
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
|
129 |
+
Model average score across benchmarks in %: 39.81
|
130 |
+
Models average score on IFEval benchmarks in %: 71.62
|
131 |
+
Models average score on BBH benchmarks in %: 48.76
|
132 |
+
Models average score on MATH benchmarks in %: 33.99
|
133 |
+
Models average score in GPQA benchmarks in %: 17.34
|
134 |
+
Models average score in MUSR benchmarks in %: 19.23
|
135 |
+
Models average score in MMLU-PRO benchmarks in %: 47.95
|
136 |
+
(No MergeKit configuration found.)
|
137 |
+
|
138 |
+
You can try the following Python script to scrape the model page:
|
139 |
+
######################################################################
|
140 |
+
import requests
|
141 |
+
from bs4 import BeautifulSoup
|
142 |
+
|
143 |
+
def scrape_model_page(model_url):
|
144 |
+
try:
|
145 |
+
response = requests.get(model_url)
|
146 |
+
if response.status_code != 200:
|
147 |
+
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
148 |
+
|
149 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
150 |
+
|
151 |
+
yaml_config = soup.find("pre")
|
152 |
+
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
153 |
+
|
154 |
+
metadata_section = soup.find("div", class_="metadata")
|
155 |
+
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
156 |
+
|
157 |
+
return {
|
158 |
+
"yaml_configuration": yaml_text,
|
159 |
+
"metadata": metadata_text
|
160 |
+
}
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
return f"Error: {str(e)}"
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
model_url = "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock"
|
167 |
+
result = scrape_model_page(model_url)
|
168 |
+
print(result)
|
169 |
+
######################################################################
|
170 |
+
---
|
171 |
+
Model Rank: 50
|
172 |
+
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01
|
173 |
+
Model average score across benchmarks in %: 39.46
|
174 |
+
Models average score on IFEval benchmarks in %: 68.72
|
175 |
+
Models average score on BBH benchmarks in %: 47.71
|
176 |
+
Models average score on MATH benchmarks in %: 35.05
|
177 |
+
Models average score in GPQA benchmarks in %: 18.23
|
178 |
+
Models average score in MUSR benchmarks in %: 19.56
|
179 |
+
Models average score in MMLU-PRO benchmarks in %: 47.5
|
180 |
+
(No MergeKit configuration found.)
|
181 |
+
|
182 |
+
# ... [SNIP: The rest of your “great results” content was included in full] ...
|
183 |
+
# (Due to character length constraints in an answer, you’d typically keep it all in one large string.)
|
184 |
+
"""
|
185 |
+
|
186 |
+
|
187 |
+
def view_parsed_benchmark_results():
|
188 |
+
"""
|
189 |
+
Simply returns the giant text block (the 'great results')
|
190 |
+
so we can display it in our Gradio app.
|
191 |
+
"""
|
192 |
+
return PARSED_BENCHMARK_RESULTS
|
193 |
+
|
194 |
+
|
195 |
+
### ----------------------------------------------------------------
|
196 |
+
### PART 2: YOUR EXISTING GRADIO CODE
|
197 |
+
### ----------------------------------------------------------------
|
198 |
+
|
199 |
+
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
200 |
+
|
201 |
data_full = [
|
202 |
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
203 |
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
|
|
|
224 |
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
|
225 |
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
226 |
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
227 |
+
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
|
228 |
]
|
|
|
|
|
|
|
|
|
229 |
df_full = pd.DataFrame(data_full, columns=columns)
|
230 |
|
|
|
231 |
def plot_average_scores():
|
232 |
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
233 |
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
|
|
248 |
plt.close()
|
249 |
|
250 |
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
|
|
251 |
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
252 |
pil_image.save(temp_image_file.name)
|
253 |
return pil_image, temp_image_file.name
|
|
|
303 |
pil_image.save(temp_image_file.name)
|
304 |
return pil_image, temp_image_file.name
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
def plot_heatmap():
|
307 |
plt.figure(figsize=(14, 10))
|
308 |
+
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
|
309 |
+
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
310 |
plt.title("Performance Heatmap", fontsize=16)
|
311 |
plt.tight_layout()
|
312 |
|
|
|
320 |
pil_image.save(temp_image_file.name)
|
321 |
return pil_image, temp_image_file.name
|
322 |
|
323 |
+
def scrape_mergekit_config(model_name):
|
324 |
+
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
325 |
+
response = requests.get(model_link)
|
326 |
+
if response.status_code != 200:
|
327 |
+
return f"Failed to fetch model page for {model_name}. Please check the link."
|
328 |
+
|
329 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
330 |
+
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
|
331 |
+
if yaml_config:
|
332 |
+
return yaml_config.text.strip()
|
333 |
+
return f"No YAML configuration found for {model_name}."
|
334 |
+
|
335 |
def download_yaml(yaml_content, model_name):
|
|
|
|
|
|
|
336 |
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
337 |
+
return None
|
338 |
|
339 |
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
340 |
return gr.File(value=yaml_content.encode(), filename=filename)
|
341 |
|
342 |
+
def scrape_model_page(model_url):
|
343 |
+
try:
|
344 |
+
response = requests.get(model_url)
|
345 |
+
if response.status_code != 200:
|
346 |
+
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
347 |
+
|
348 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
349 |
+
yaml_config = soup.find("pre")
|
350 |
+
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
351 |
+
metadata_section = soup.find("div", class_="metadata")
|
352 |
+
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
353 |
+
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
354 |
+
except Exception as e:
|
355 |
+
return f"Error: {str(e)}"
|
356 |
+
|
357 |
+
def display_scraped_model_data(model_url):
|
358 |
+
return scrape_model_page(model_url)
|
359 |
+
|
360 |
def download_all_data():
|
|
|
361 |
csv_buffer = io.StringIO()
|
362 |
df_full.to_csv(csv_buffer, index=False)
|
363 |
csv_data = csv_buffer.getvalue().encode('utf-8')
|
364 |
|
|
|
365 |
average_plot_pil, average_plot_name = plot_average_scores()
|
366 |
task_plot_pil, task_plot_name = plot_task_performance()
|
367 |
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
|
|
386 |
|
387 |
for model_name in df_full["Model Configuration"].to_list():
|
388 |
yaml_content = scrape_mergekit_config(model_name)
|
389 |
+
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
|
390 |
+
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
391 |
|
392 |
zip_buffer.seek(0)
|
|
|
393 |
return zip_buffer, "analysis_data.zip"
|
394 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
+
### ----------------------------------------------------------------
|
397 |
+
### PART 3: GRADIO INTERFACE
|
398 |
+
### ----------------------------------------------------------------
|
|
|
|
|
|
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
with gr.Blocks() as demo:
|
401 |
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
+
with gr.Tab("Plots & Scraping"):
|
404 |
+
with gr.Row():
|
405 |
+
btn1 = gr.Button("Show Average Performance")
|
406 |
+
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
407 |
+
img1_download = gr.File(label="Download Average Performance")
|
408 |
+
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
btn2 = gr.Button("Show Task Performance")
|
412 |
+
img2 = gr.Image(type="pil", label="Task Performance Plot")
|
413 |
+
img2_download = gr.File(label="Download Task Performance")
|
414 |
+
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
415 |
+
|
416 |
+
with gr.Row():
|
417 |
+
btn3 = gr.Button("Task-Specific Top Models")
|
418 |
+
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
|
419 |
+
img3_download = gr.File(label="Download Top Models")
|
420 |
+
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
421 |
+
|
422 |
+
with gr.Row():
|
423 |
+
btn4 = gr.Button("Plot Performance Heatmap")
|
424 |
+
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
|
425 |
+
heatmap_download = gr.File(label="Download Heatmap")
|
426 |
+
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
427 |
+
|
428 |
+
with gr.Row():
|
429 |
+
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
430 |
+
with gr.Column():
|
431 |
+
scrape_btn = gr.Button("Scrape MergeKit Configuration")
|
432 |
+
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
|
433 |
+
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
|
434 |
+
with gr.Column():
|
435 |
+
save_yaml_btn = gr.Button("Save MergeKit Configuration")
|
436 |
+
yaml_download = gr.File(label="Download MergeKit Configuration")
|
437 |
+
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
438 |
+
|
439 |
+
with gr.Row():
|
440 |
+
download_all_btn = gr.Button("Download Everything")
|
441 |
+
all_downloads = gr.File(label="Download All Data")
|
442 |
+
download_all_btn.click(download_all_data, outputs=all_downloads)
|
443 |
+
|
444 |
+
gr.Markdown("## Live Scraping Features")
|
445 |
+
with gr.Row():
|
446 |
+
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
447 |
+
live_scrape_btn = gr.Button("Scrape Model Page")
|
448 |
+
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
449 |
+
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
450 |
+
|
451 |
+
# NEW TAB: Show the parsed benchmark results from your big script run
|
452 |
+
with gr.Tab("Parsed Benchmark Results"):
|
453 |
+
gr.Markdown("Here is the aggregated set of benchmark scores & configurations obtained from your script:")
|
454 |
+
show_results_btn = gr.Button("Show Parsed Results")
|
455 |
+
results_box = gr.Textbox(label="Benchmark Results", lines=30)
|
456 |
|
457 |
+
# When user clicks the button, show the giant text block in the textbox
|
458 |
+
show_results_btn.click(fn=view_parsed_benchmark_results, outputs=results_box)
|
459 |
+
|
460 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|