CultriX commited on
Commit
7c4b72f
·
verified ·
1 Parent(s): b5a9e14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -29
app.py CHANGED
@@ -51,7 +51,7 @@ def plot_average_scores():
51
  df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
52
  df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
53
 
54
- plt.figure(figsize=(12, 8))
55
  plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
56
  plt.title("Average Performance of Models Across Tasks", fontsize=16)
57
  plt.xlabel("Average Score", fontsize=14)
@@ -75,7 +75,7 @@ def plot_average_scores():
75
  def plot_task_performance():
76
  df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
77
 
78
- plt.figure(figsize=(14, 10))
79
  for model in df_full["Model Configuration"]:
80
  model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
81
  plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
@@ -105,7 +105,7 @@ def plot_task_specific_top_models():
105
 
106
  results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
107
 
108
- plt.figure(figsize=(12, 6))
109
  plt.bar(results["Task"], results["Score"])
110
  plt.title("Task-Specific Top Models", fontsize=16)
111
  plt.xlabel("Task", fontsize=14)
@@ -139,7 +139,7 @@ def scrape_mergekit_config(model_name):
139
  return f"No YAML configuration found for {model_name}."
140
 
141
  def plot_heatmap():
142
- plt.figure(figsize=(12, 8))
143
  sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
144
  plt.title("Performance Heatmap", fontsize=16)
145
  plt.tight_layout()
@@ -240,40 +240,28 @@ with gr.Blocks() as demo:
240
  gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
241
 
242
  with gr.Row():
243
- with gr.Column(width=3):
244
- btn1 = gr.Button("Show Average Performance")
245
- with gr.Column(width=7):
246
- img1 = gr.Image(type="pil", label="Average Performance Plot")
247
- with gr.Column(width=2):
248
- img1_download = gr.File(label="Download Average Performance")
249
  btn1.click(plot_average_scores, outputs=[img1,img1_download])
250
 
251
  with gr.Row():
252
- with gr.Column(width=3):
253
- btn2 = gr.Button("Show Task Performance")
254
- with gr.Column(width=7):
255
- img2 = gr.Image(type="pil", label="Task Performance Plot")
256
- with gr.Column(width=2):
257
- img2_download = gr.File(label="Download Task Performance")
258
  btn2.click(plot_task_performance, outputs=[img2, img2_download])
259
 
260
  with gr.Row():
261
- with gr.Column(width=3):
262
- btn3 = gr.Button("Task-Specific Top Models")
263
- with gr.Column(width=7):
264
- img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
265
- with gr.Column(width=2):
266
- img3_download = gr.File(label="Download Top Models")
267
  btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
268
 
269
  with gr.Row():
270
- with gr.Column(width=3):
271
- btn4 = gr.Button("Plot Performance Heatmap")
272
- with gr.Column(width=7):
273
- heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
274
- with gr.Column(width=2):
275
- heatmap_download = gr.File(label="Download Heatmap")
276
- btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
277
 
278
  with gr.Row():
279
  model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
 
51
  df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
52
  df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
53
 
54
+ plt.figure(figsize=(14, 10))
55
  plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
56
  plt.title("Average Performance of Models Across Tasks", fontsize=16)
57
  plt.xlabel("Average Score", fontsize=14)
 
75
  def plot_task_performance():
76
  df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
77
 
78
+ plt.figure(figsize=(16, 12))
79
  for model in df_full["Model Configuration"]:
80
  model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
81
  plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
 
105
 
106
  results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
107
 
108
+ plt.figure(figsize=(14, 8))
109
  plt.bar(results["Task"], results["Score"])
110
  plt.title("Task-Specific Top Models", fontsize=16)
111
  plt.xlabel("Task", fontsize=14)
 
139
  return f"No YAML configuration found for {model_name}."
140
 
141
  def plot_heatmap():
142
+ plt.figure(figsize=(14, 10))
143
  sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
144
  plt.title("Performance Heatmap", fontsize=16)
145
  plt.tight_layout()
 
240
  gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
241
 
242
  with gr.Row():
243
+ btn1 = gr.Button("Show Average Performance")
244
+ img1 = gr.Image(type="pil", label="Average Performance Plot")
245
+ img1_download = gr.File(label="Download Average Performance")
 
 
 
246
  btn1.click(plot_average_scores, outputs=[img1,img1_download])
247
 
248
  with gr.Row():
249
+ btn2 = gr.Button("Show Task Performance")
250
+ img2 = gr.Image(type="pil", label="Task Performance Plot")
251
+ img2_download = gr.File(label="Download Task Performance")
 
 
 
252
  btn2.click(plot_task_performance, outputs=[img2, img2_download])
253
 
254
  with gr.Row():
255
+ btn3 = gr.Button("Task-Specific Top Models")
256
+ img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
257
+ img3_download = gr.File(label="Download Top Models")
 
 
 
258
  btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
259
 
260
  with gr.Row():
261
+ btn4 = gr.Button("Plot Performance Heatmap")
262
+ heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
263
+ heatmap_download = gr.File(label="Download Heatmap")
264
+ btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
 
 
 
265
 
266
  with gr.Row():
267
  model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")