News_AI / app.py
CamiloVega's picture
Update app.py
e4cde65 verified
raw
history blame
8.57 kB
import gradio as gr
import logging
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import whisper
from pydub import AudioSegment
import requests
from bs4 import BeautifulSoup
from typing import Optional, Dict, Any
from dataclasses import dataclass
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s) %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class NewsConfig:
model_name: str = "meta-llama/Llama-2-3b-chat-hf"
max_tokens: int = 256
temperature: float = 0.7
top_p: float = 0.95
class NewsGenerator:
def __init__(self):
self.config = NewsConfig()
self.tokenizer = None
self.model = None
self.whisper_model = None
self._initialize_models()
def _initialize_models(self):
"""Initialize models with efficient settings"""
try:
if not self.tokenizer:
self.tokenizer = AutoTokenizer.from_pretrained(
self.config.model_name,
use_fast=True,
model_max_length=self.config.max_tokens
)
self.tokenizer.pad_token = self.tokenizer.eos_token
if not self.model:
self.model = AutoModelForCausalLM.from_pretrained(
self.config.model_name,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_safetensors=True
)
if not self.whisper_model:
self.whisper_model = whisper.load_model(
"tiny",
device="cuda" if torch.cuda.is_available() else "cpu"
)
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
def transcribe_audio(self, audio_file: str) -> str:
"""Transcribe audio file with improved error handling"""
try:
if not audio_file:
return "Error: No audio file provided"
result = self.whisper_model.transcribe(audio_file)
return result.get("text", "Transcription failed")
except Exception as e:
logger.error(f"Audio transcription error: {str(e)}")
return f"Error transcribing audio: {str(e)}"
def generate_news(self, prompt: str) -> str:
"""Generate news article with optimized parameters"""
try:
with torch.inference_mode():
outputs = self.model.generate(
inputs=self.tokenizer(prompt, return_tensors="pt").input_ids,
max_new_tokens=self.config.max_tokens,
temperature=self.config.temperature,
top_p=self.config.top_p,
do_sample=True,
early_stopping=True
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"News generation error: {str(e)}")
return f"Error generating news: {str(e)}"
def read_document(document_path: str) -> str:
"""Read document content with better error handling"""
try:
if document_path.endswith(".pdf"):
with fitz.open(document_path) as doc:
return "\n".join(page.get_text() for page in doc)
elif document_path.endswith((".docx", ".xlsx", ".csv")):
content = ""
if document_path.endswith(".docx"):
import docx
doc = docx.Document(document_path)
content = "\n".join(p.text for p in doc.paragraphs)
elif document_path.endswith(".xlsx"):
import pandas as pd
content = pd.read_excel(document_path).to_string()
elif document_path.endswith(".csv"):
import pandas as pd
content = pd.read_csv(document_path).to_string()
return content
return "Unsupported file type"
except Exception as e:
logger.error(f"Document reading error: {str(e)}")
return f"Error reading document: {str(e)}"
def read_url(url: str) -> str:
"""Read URL content with better handling"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return BeautifulSoup(response.content, 'html.parser').get_text()
except Exception as e:
logger.error(f"URL reading error: {str(e)}")
return f"Error reading URL: {str(e)}"
def process_social_media(url: str) -> Dict[str, Any]:
"""Process social media content with improved handling"""
try:
text = read_url(url)
return {"text": text, "video": None}
except Exception as e:
logger.error(f"Social media processing error: {str(e)}")
return {"text": None, "video": None}
def main():
"""Main function to create and run the Gradio app"""
news_generator = NewsGenerator()
with gr.Blocks() as demo:
gr.Markdown("# Generador de Noticias Optimizado")
with gr.Row():
instrucciones = gr.Textbox(label="Instrucciones", lines=2)
hechos = gr.Textbox(label="Hechos", lines=4)
tamaño = gr.Number(label="Tamaño (palabras)", value=100)
tono = gr.Dropdown(label="Tono", choices=["serio", "neutral", "divertido"], value="neutral")
with gr.Row():
documento = gr.File(label="Documento", file_types=["pdf", "docx", "xlsx", "csv"])
audio = gr.File(label="Audio/Video", file_types=["audio", "video"])
url = gr.Textbox(label="URL")
social_url = gr.Textbox(label="URL de red social")
with gr.Row():
generar = gr.Button("Generar Noticia")
noticia = gr.Textbox(label="Noticia Generada", lines=20)
transcripciones = gr.Textbox(label="Transcripciones", lines=10)
def generate_news_output(
instrucciones: str,
hechos: str,
tamaño: int,
tono: str,
documento: Optional[gr.File],
audio: Optional[gr.File],
url: Optional[str],
social_url: Optional[str]
):
try:
# Process document
if documento:
doc_content = read_document(documento.name)
else:
doc_content = ""
# Process audio
if audio:
audio_content = news_generator.transcribe_audio(audio.name)
else:
audio_content = ""
# Process URL
if url:
url_content = read_url(url)
else:
url_content = ""
# Process social media
if social_url:
social_content = process_social_media(social_url)
else:
social_content = {"text": "", "video": ""}
# Generate prompt
prompt = f"""[INST] Escribe una noticia basada en la siguiente información:
Instrucciones: {instrucciones}
Hechos: {hechos}
Documento: {doc_content}
Audio: {audio_content}
URL: {url_content}
Red Social: {social_content['text']}
Video: {social_content['video'] if social_content else ''}
Parámetros:
- Tamaño: {tamaño} palabras
- Tono: {tono}
- Incluye: Título, gancho, cuerpo, 5W
- Estilo periodístico
[/INST]"""
# Generate news
news = news_generator.generate_news(prompt)
return news, f"Transcripciones generadas correctamente"
except Exception as e:
return f"Error generando noticia: {str(e)}", f"Error: {str(e)}"
generate_news_output(
instrucciones,
hechos,
tamaño,
tono,
documento,
audio,
url,
social_url
)(generar, [noticia, transcripciones])
if __name__ == "__main__":
demo.launch()
if __name__ == "__main__":
main()