File size: 8,565 Bytes
30cf2e4
 
 
 
e4cde65
30cf2e4
 
e4cde65
 
 
 
30cf2e4
 
 
e4cde65
30cf2e4
 
 
e4cde65
 
 
 
 
 
 
 
30cf2e4
e4cde65
 
 
 
 
 
 
 
30cf2e4
e4cde65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cf2e4
e4cde65
 
 
 
 
30cf2e4
 
e4cde65
30cf2e4
 
e4cde65
 
30cf2e4
e4cde65
 
30cf2e4
e4cde65
 
30cf2e4
 
e4cde65
 
30cf2e4
e4cde65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cf2e4
e4cde65
 
30cf2e4
 
e4cde65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cf2e4
e4cde65
30cf2e4
 
e4cde65
 
30cf2e4
e4cde65
30cf2e4
e4cde65
30cf2e4
e4cde65
30cf2e4
 
e4cde65
 
30cf2e4
e4cde65
 
30cf2e4
e4cde65
 
30cf2e4
e4cde65
 
 
 
30cf2e4
e4cde65
30cf2e4
 
e4cde65
 
 
 
 
30cf2e4
e4cde65
 
 
 
30cf2e4
 
e4cde65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cf2e4
 
e4cde65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import logging
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import whisper
from pydub import AudioSegment
import requests
from bs4 import BeautifulSoup
from typing import Optional, Dict, Any
from dataclasses import dataclass

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s) %(message)s'
)
logger = logging.getLogger(__name__)

@dataclass
class NewsConfig:
    model_name: str = "meta-llama/Llama-2-3b-chat-hf"
    max_tokens: int = 256
    temperature: float = 0.7
    top_p: float = 0.95

class NewsGenerator:
    def __init__(self):
        self.config = NewsConfig()
        self.tokenizer = None
        self.model = None
        self.whisper_model = None
        self._initialize_models()

    def _initialize_models(self):
        """Initialize models with efficient settings"""
        try:
            if not self.tokenizer:
                self.tokenizer = AutoTokenizer.from_pretrained(
                    self.config.model_name,
                    use_fast=True,
                    model_max_length=self.config.max_tokens
                )
                self.tokenizer.pad_token = self.tokenizer.eos_token

            if not self.model:
                self.model = AutoModelForCausalLM.from_pretrained(
                    self.config.model_name,
                    device_map="auto",
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    use_safetensors=True
                )

            if not self.whisper_model:
                self.whisper_model = whisper.load_model(
                    "tiny",
                    device="cuda" if torch.cuda.is_available() else "cpu"
                )

        except Exception as e:
            logger.error(f"Error initializing models: {str(e)}")
            raise

    def transcribe_audio(self, audio_file: str) -> str:
        """Transcribe audio file with improved error handling"""
        try:
            if not audio_file:
                return "Error: No audio file provided"
                
            result = self.whisper_model.transcribe(audio_file)
            return result.get("text", "Transcription failed")
            
        except Exception as e:
            logger.error(f"Audio transcription error: {str(e)}")
            return f"Error transcribing audio: {str(e)}"

    def generate_news(self, prompt: str) -> str:
        """Generate news article with optimized parameters"""
        try:
            with torch.inference_mode():
                outputs = self.model.generate(
                    inputs=self.tokenizer(prompt, return_tensors="pt").input_ids,
                    max_new_tokens=self.config.max_tokens,
                    temperature=self.config.temperature,
                    top_p=self.config.top_p,
                    do_sample=True,
                    early_stopping=True
                )
                return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        except Exception as e:
            logger.error(f"News generation error: {str(e)}")
            return f"Error generating news: {str(e)}"

def read_document(document_path: str) -> str:
    """Read document content with better error handling"""
    try:
        if document_path.endswith(".pdf"):
            with fitz.open(document_path) as doc:
                return "\n".join(page.get_text() for page in doc)
        elif document_path.endswith((".docx", ".xlsx", ".csv")):
            content = ""
            if document_path.endswith(".docx"):
                import docx
                doc = docx.Document(document_path)
                content = "\n".join(p.text for p in doc.paragraphs)
            elif document_path.endswith(".xlsx"):
                import pandas as pd
                content = pd.read_excel(document_path).to_string()
            elif document_path.endswith(".csv"):
                import pandas as pd
                content = pd.read_csv(document_path).to_string()
            return content
        return "Unsupported file type"
    except Exception as e:
        logger.error(f"Document reading error: {str(e)}")
        return f"Error reading document: {str(e)}"

def read_url(url: str) -> str:
    """Read URL content with better handling"""
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        return BeautifulSoup(response.content, 'html.parser').get_text()
    except Exception as e:
        logger.error(f"URL reading error: {str(e)}")
        return f"Error reading URL: {str(e)}"

def process_social_media(url: str) -> Dict[str, Any]:
    """Process social media content with improved handling"""
    try:
        text = read_url(url)
        return {"text": text, "video": None}
    except Exception as e:
        logger.error(f"Social media processing error: {str(e)}")
        return {"text": None, "video": None}

def main():
    """Main function to create and run the Gradio app"""
    news_generator = NewsGenerator()
    
    with gr.Blocks() as demo:
        gr.Markdown("# Generador de Noticias Optimizado")
        
        with gr.Row():
            instrucciones = gr.Textbox(label="Instrucciones", lines=2)
            hechos = gr.Textbox(label="Hechos", lines=4)
            tamaño = gr.Number(label="Tamaño (palabras)", value=100)
            tono = gr.Dropdown(label="Tono", choices=["serio", "neutral", "divertido"], value="neutral")
        
        with gr.Row():
            documento = gr.File(label="Documento", file_types=["pdf", "docx", "xlsx", "csv"])
            audio = gr.File(label="Audio/Video", file_types=["audio", "video"])
            url = gr.Textbox(label="URL")
            social_url = gr.Textbox(label="URL de red social")
        
        with gr.Row():
            generar = gr.Button("Generar Noticia")
            noticia = gr.Textbox(label="Noticia Generada", lines=20)
            transcripciones = gr.Textbox(label="Transcripciones", lines=10)
        
        def generate_news_output(
            instrucciones: str,
            hechos: str,
            tamaño: int,
            tono: str,
            documento: Optional[gr.File],
            audio: Optional[gr.File],
            url: Optional[str],
            social_url: Optional[str]
        ):
            try:
                # Process document
                if documento:
                    doc_content = read_document(documento.name)
                else:
                    doc_content = ""
                
                # Process audio
                if audio:
                    audio_content = news_generator.transcribe_audio(audio.name)
                else:
                    audio_content = ""
                
                # Process URL
                if url:
                    url_content = read_url(url)
                else:
                    url_content = ""
                
                # Process social media
                if social_url:
                    social_content = process_social_media(social_url)
                else:
                    social_content = {"text": "", "video": ""}
                
                # Generate prompt
                prompt = f"""[INST] Escribe una noticia basada en la siguiente información:
                Instrucciones: {instrucciones}
                Hechos: {hechos}
                Documento: {doc_content}
                Audio: {audio_content}
                URL: {url_content}
                Red Social: {social_content['text']}
                Video: {social_content['video'] if social_content else ''}
                
                Parámetros:
                - Tamaño: {tamaño} palabras
                - Tono: {tono}
                - Incluye: Título, gancho, cuerpo, 5W
                - Estilo periodístico
                [/INST]"""
                
                # Generate news
                news = news_generator.generate_news(prompt)
                return news, f"Transcripciones generadas correctamente"
                
            except Exception as e:
                return f"Error generando noticia: {str(e)}", f"Error: {str(e)}"
        
        generate_news_output(
            instrucciones,
            hechos,
            tamaño,
            tono,
            documento,
            audio,
            url,
            social_url
        )(generar, [noticia, transcripciones])
    
    if __name__ == "__main__":
        demo.launch()

if __name__ == "__main__":
    main()