Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
import pandas as pd
|
7 |
+
import requests
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
import torch
|
11 |
+
import whisper
|
12 |
+
from moviepy.editor import VideoFileClip
|
13 |
+
from pydub import AudioSegment
|
14 |
+
import fitz
|
15 |
+
import docx
|
16 |
+
import yt_dlp
|
17 |
+
from functools import lru_cache
|
18 |
+
import gc
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logging.basicConfig(
|
22 |
+
level=logging.INFO,
|
23 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
24 |
+
)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
class ModelManager:
|
28 |
+
_instance = None
|
29 |
+
|
30 |
+
def __new__(cls):
|
31 |
+
if cls._instance is None:
|
32 |
+
cls._instance = super(ModelManager, cls).__new__(cls)
|
33 |
+
cls._instance._initialized = False
|
34 |
+
return cls._instance
|
35 |
+
|
36 |
+
def __init__(self):
|
37 |
+
if not self._initialized:
|
38 |
+
self.tokenizer = None
|
39 |
+
self.model = None
|
40 |
+
self.news_generator = None
|
41 |
+
self.whisper_model = None
|
42 |
+
self._initialized = True
|
43 |
+
|
44 |
+
@spaces.GPU(duration=120)
|
45 |
+
def initialize_models(self):
|
46 |
+
"""Initialize models with ZeroGPU compatible settings"""
|
47 |
+
try:
|
48 |
+
import torch
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
|
51 |
+
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
52 |
+
if not HUGGINGFACE_TOKEN:
|
53 |
+
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
54 |
+
|
55 |
+
logger.info("Starting model initialization...")
|
56 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
57 |
+
|
58 |
+
# Load tokenizer
|
59 |
+
logger.info("Loading tokenizer...")
|
60 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
61 |
+
model_name,
|
62 |
+
token=HUGGINGFACE_TOKEN,
|
63 |
+
use_fast=True,
|
64 |
+
model_max_length=512
|
65 |
+
)
|
66 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
67 |
+
|
68 |
+
# Initialize model with ZeroGPU compatible settings
|
69 |
+
logger.info("Loading model...")
|
70 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
model_name,
|
72 |
+
token=HUGGINGFACE_TOKEN,
|
73 |
+
device_map="auto", # Automatically handle device placement
|
74 |
+
torch_dtype=torch.float16, # Use float16 to reduce memory usage
|
75 |
+
low_cpu_mem_usage=True, # Optimize CPU memory usage
|
76 |
+
use_safetensors=True, # Use safetensors for better memory management
|
77 |
+
max_memory={0: "6GB"}, # Limit GPU memory usage
|
78 |
+
offload_folder="offload", # Folder for offloading to CPU
|
79 |
+
offload_state_dict=True # Offload state dict to CPU
|
80 |
+
)
|
81 |
+
|
82 |
+
# Create pipeline with minimal settings
|
83 |
+
logger.info("Creating pipeline...")
|
84 |
+
from transformers import pipeline
|
85 |
+
self.news_generator = pipeline(
|
86 |
+
"text-generation",
|
87 |
+
model=self.model,
|
88 |
+
tokenizer=self.tokenizer,
|
89 |
+
device_map="auto", # Automatically handle device placement
|
90 |
+
torch_dtype=torch.float16, # Use float16 for memory efficiency
|
91 |
+
max_new_tokens=512,
|
92 |
+
do_sample=True,
|
93 |
+
temperature=0.7,
|
94 |
+
top_p=0.95,
|
95 |
+
repetition_penalty=1.2,
|
96 |
+
num_return_sequences=1,
|
97 |
+
early_stopping=True
|
98 |
+
)
|
99 |
+
|
100 |
+
# Load Whisper model with minimal settings
|
101 |
+
logger.info("Loading Whisper model...")
|
102 |
+
self.whisper_model = whisper.load_model(
|
103 |
+
"tiny",
|
104 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
105 |
+
download_root="/tmp/whisper"
|
106 |
+
)
|
107 |
+
|
108 |
+
logger.info("All models initialized successfully")
|
109 |
+
return True
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
logger.error(f"Error during model initialization: {str(e)}")
|
113 |
+
self.reset_models()
|
114 |
+
raise
|
115 |
+
|
116 |
+
def reset_models(self):
|
117 |
+
"""Reset all models and clear memory"""
|
118 |
+
try:
|
119 |
+
if hasattr(self, 'model') and self.model is not None:
|
120 |
+
self.model.cpu()
|
121 |
+
del self.model
|
122 |
+
|
123 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
124 |
+
del self.tokenizer
|
125 |
+
|
126 |
+
if hasattr(self, 'news_generator') and self.news_generator is not None:
|
127 |
+
del self.news_generator
|
128 |
+
|
129 |
+
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
|
130 |
+
if hasattr(self.whisper_model, 'cpu'):
|
131 |
+
self.whisper_model.cpu()
|
132 |
+
del self.whisper_model
|
133 |
+
|
134 |
+
self.tokenizer = None
|
135 |
+
self.model = None
|
136 |
+
self.news_generator = None
|
137 |
+
self.whisper_model = None
|
138 |
+
|
139 |
+
if torch.cuda.is_available():
|
140 |
+
torch.cuda.empty_cache()
|
141 |
+
torch.cuda.synchronize()
|
142 |
+
|
143 |
+
import gc
|
144 |
+
gc.collect()
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error during model reset: {str(e)}")
|
148 |
+
|
149 |
+
def check_models_initialized(self):
|
150 |
+
"""Check if all models are properly initialized"""
|
151 |
+
if None in (self.tokenizer, self.model, self.news_generator, self.whisper_model):
|
152 |
+
logger.warning("Models not initialized, attempting to initialize...")
|
153 |
+
self.initialize_models()
|
154 |
+
|
155 |
+
def get_models(self):
|
156 |
+
"""Get initialized models, initializing if necessary"""
|
157 |
+
self.check_models_initialized()
|
158 |
+
return self.tokenizer, self.model, self.news_generator, self.whisper_model
|
159 |
+
|
160 |
+
# Create global model manager instance
|
161 |
+
model_manager = ModelManager()
|
162 |
+
|
163 |
+
@lru_cache(maxsize=32)
|
164 |
+
def download_social_media_video(url):
|
165 |
+
"""Download a video from social media."""
|
166 |
+
ydl_opts = {
|
167 |
+
'format': 'bestaudio/best',
|
168 |
+
'postprocessors': [{
|
169 |
+
'key': 'FFmpegExtractAudio',
|
170 |
+
'preferredcodec': 'mp3',
|
171 |
+
'preferredquality': '192',
|
172 |
+
}],
|
173 |
+
'outtmpl': '%(id)s.%(ext)s',
|
174 |
+
}
|
175 |
+
try:
|
176 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
177 |
+
info_dict = ydl.extract_info(url, download=True)
|
178 |
+
audio_file = f"{info_dict['id']}.mp3"
|
179 |
+
logger.info(f"Video downloaded successfully: {audio_file}")
|
180 |
+
return audio_file
|
181 |
+
except Exception as e:
|
182 |
+
logger.error(f"Error downloading video: {str(e)}")
|
183 |
+
raise
|
184 |
+
|
185 |
+
def convert_video_to_audio(video_file):
|
186 |
+
"""Convert a video file to audio."""
|
187 |
+
try:
|
188 |
+
video = VideoFileClip(video_file)
|
189 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
190 |
+
video.audio.write_audiofile(temp_file.name)
|
191 |
+
logger.info(f"Video converted to audio: {temp_file.name}")
|
192 |
+
return temp_file.name
|
193 |
+
except Exception as e:
|
194 |
+
logger.error(f"Error converting video: {str(e)}")
|
195 |
+
raise
|
196 |
+
|
197 |
+
def preprocess_audio(audio_file):
|
198 |
+
"""Preprocess the audio file to improve quality."""
|
199 |
+
try:
|
200 |
+
audio = AudioSegment.from_file(audio_file)
|
201 |
+
audio = audio.apply_gain(-audio.dBFS + (-20))
|
202 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
203 |
+
audio.export(temp_file.name, format="mp3")
|
204 |
+
logger.info(f"Audio preprocessed: {temp_file.name}")
|
205 |
+
return temp_file.name
|
206 |
+
except Exception as e:
|
207 |
+
logger.error(f"Error preprocessing audio: {str(e)}")
|
208 |
+
raise
|
209 |
+
|
210 |
+
@spaces.GPU(duration=120)
|
211 |
+
def transcribe_audio(file):
|
212 |
+
"""Transcribe an audio or video file."""
|
213 |
+
try:
|
214 |
+
_, _, _, whisper_model = model_manager.get_models()
|
215 |
+
|
216 |
+
if isinstance(file, str) and file.startswith('http'):
|
217 |
+
file_path = download_social_media_video(file)
|
218 |
+
elif isinstance(file, str) and file.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
219 |
+
file_path = convert_video_to_audio(file)
|
220 |
+
else:
|
221 |
+
file_path = preprocess_audio(file)
|
222 |
+
|
223 |
+
logger.info(f"Transcribing audio: {file_path}")
|
224 |
+
if not os.path.exists(file_path):
|
225 |
+
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
226 |
+
|
227 |
+
with torch.inference_mode():
|
228 |
+
result = whisper_model.transcribe(file_path)
|
229 |
+
if not result:
|
230 |
+
raise RuntimeError("Transcription failed to produce results")
|
231 |
+
|
232 |
+
transcription = result.get("text", "Error in transcription")
|
233 |
+
logger.info(f"Transcription completed: {transcription[:50]}...")
|
234 |
+
return transcription
|
235 |
+
except Exception as e:
|
236 |
+
logger.error(f"Error transcribing: {str(e)}")
|
237 |
+
return f"Error processing the file: {str(e)}"
|
238 |
+
|
239 |
+
@lru_cache(maxsize=32)
|
240 |
+
def read_document(document_path):
|
241 |
+
"""Read the content of a document."""
|
242 |
+
try:
|
243 |
+
if document_path.endswith(".pdf"):
|
244 |
+
doc = fitz.open(document_path)
|
245 |
+
return "\n".join([page.get_text() for page in doc])
|
246 |
+
elif document_path.endswith(".docx"):
|
247 |
+
doc = docx.Document(document_path)
|
248 |
+
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
249 |
+
elif document_path.endswith(".xlsx"):
|
250 |
+
return pd.read_excel(document_path).to_string()
|
251 |
+
elif document_path.endswith(".csv"):
|
252 |
+
return pd.read_csv(document_path).to_string()
|
253 |
+
else:
|
254 |
+
return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document."
|
255 |
+
except Exception as e:
|
256 |
+
logger.error(f"Error reading document: {str(e)}")
|
257 |
+
return f"Error reading document: {str(e)}"
|
258 |
+
|
259 |
+
@lru_cache(maxsize=32)
|
260 |
+
def read_url(url):
|
261 |
+
"""Read the content of a URL."""
|
262 |
+
try:
|
263 |
+
response = requests.get(url)
|
264 |
+
response.raise_for_status()
|
265 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
266 |
+
return soup.get_text()
|
267 |
+
except Exception as e:
|
268 |
+
logger.error(f"Error reading URL: {str(e)}")
|
269 |
+
return f"Error reading URL: {str(e)}"
|
270 |
+
|
271 |
+
def process_social_content(url):
|
272 |
+
"""Process social media content."""
|
273 |
+
try:
|
274 |
+
text_content = read_url(url)
|
275 |
+
try:
|
276 |
+
video_content = transcribe_audio(url)
|
277 |
+
except Exception as e:
|
278 |
+
logger.error(f"Error processing video content: {str(e)}")
|
279 |
+
video_content = None
|
280 |
+
|
281 |
+
return {
|
282 |
+
"text": text_content,
|
283 |
+
"video": video_content
|
284 |
+
}
|
285 |
+
except Exception as e:
|
286 |
+
logger.error(f"Error processing social content: {str(e)}")
|
287 |
+
return None
|
288 |
+
|
289 |
+
@spaces.GPU(duration=120)
|
290 |
+
def generate_news(instructions, facts, size, tone, *args):
|
291 |
+
try:
|
292 |
+
tokenizer, _, news_generator, _ = model_manager.get_models()
|
293 |
+
|
294 |
+
knowledge_base = {
|
295 |
+
"instructions": instructions,
|
296 |
+
"facts": facts,
|
297 |
+
"document_content": [],
|
298 |
+
"audio_data": [],
|
299 |
+
"url_content": [],
|
300 |
+
"social_content": []
|
301 |
+
}
|
302 |
+
|
303 |
+
num_audios = 5 * 3
|
304 |
+
num_social_urls = 3 * 3
|
305 |
+
num_urls = 5
|
306 |
+
|
307 |
+
audios = args[:num_audios]
|
308 |
+
social_urls = args[num_audios:num_audios+num_social_urls]
|
309 |
+
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
310 |
+
documents = args[num_audios+num_social_urls+num_urls:]
|
311 |
+
|
312 |
+
for url in urls:
|
313 |
+
if url:
|
314 |
+
content = read_url(url)
|
315 |
+
if content and not content.startswith("Error"):
|
316 |
+
knowledge_base["url_content"].append(content)
|
317 |
+
|
318 |
+
for document in documents:
|
319 |
+
if document is not None:
|
320 |
+
content = read_document(document.name)
|
321 |
+
if content and not content.startswith("Error"):
|
322 |
+
knowledge_base["document_content"].append(content)
|
323 |
+
|
324 |
+
for i in range(0, len(audios), 3):
|
325 |
+
audio_file, name, position = audios[i:i+3]
|
326 |
+
if audio_file is not None:
|
327 |
+
knowledge_base["audio_data"].append({
|
328 |
+
"audio": audio_file,
|
329 |
+
"name": name,
|
330 |
+
"position": position
|
331 |
+
})
|
332 |
+
|
333 |
+
for i in range(0, len(social_urls), 3):
|
334 |
+
social_url, social_name, social_context = social_urls[i:i+3]
|
335 |
+
if social_url:
|
336 |
+
social_content = process_social_content(social_url)
|
337 |
+
if social_content:
|
338 |
+
knowledge_base["social_content"].append({
|
339 |
+
"url": social_url,
|
340 |
+
"name": social_name,
|
341 |
+
"context": social_context,
|
342 |
+
"text": social_content["text"],
|
343 |
+
"video": social_content["video"]
|
344 |
+
})
|
345 |
+
|
346 |
+
transcriptions_text = ""
|
347 |
+
raw_transcriptions = ""
|
348 |
+
|
349 |
+
for idx, data in enumerate(knowledge_base["audio_data"]):
|
350 |
+
if data["audio"] is not None:
|
351 |
+
transcription = transcribe_audio(data["audio"])
|
352 |
+
if not transcription.startswith("Error"):
|
353 |
+
transcriptions_text += f'"{transcription}" - {data["name"]}, {data["position"]}\n'
|
354 |
+
raw_transcriptions += f'[Audio/Video {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}\n\n'
|
355 |
+
|
356 |
+
for data in knowledge_base["social_content"]:
|
357 |
+
if data["text"] and not str(data["text"]).startswith("Error"):
|
358 |
+
transcriptions_text += f'[Social media text]: "{data["text"][:200]}..." - {data["name"]}, {data["context"]}\n'
|
359 |
+
raw_transcriptions += transcriptions_text + "\n\n"
|
360 |
+
if data["video"] and not str(data["video"]).startswith("Error"):
|
361 |
+
video_transcription = f'[Social media video]: "{data["video"]}" - {data["name"]}, {data["context"]}\n'
|
362 |
+
transcriptions_text += video_transcription
|
363 |
+
raw_transcriptions += video_transcription + "\n\n"
|
364 |
+
|
365 |
+
document_content = "\n\n".join(knowledge_base["document_content"])
|
366 |
+
url_content = "\n\n".join(knowledge_base["url_content"])
|
367 |
+
|
368 |
+
|
369 |
+
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
370 |
+
|
371 |
+
Instructions: {knowledge_base["instructions"]}
|
372 |
+
Facts: {knowledge_base["facts"]}
|
373 |
+
Additional content from documents: {document_content}
|
374 |
+
Additional content from URLs: {url_content}
|
375 |
+
|
376 |
+
Use these transcriptions as direct and indirect quotes:
|
377 |
+
{transcriptions_text}
|
378 |
+
|
379 |
+
Follow these requirements:
|
380 |
+
- Write a title
|
381 |
+
- Write a 15-word hook that complements the title
|
382 |
+
- Write the body with {size} words
|
383 |
+
- Use a {tone} tone
|
384 |
+
- Answer the 5 Ws (Who, What, When, Where, Why) in the first paragraph
|
385 |
+
- Use at least 80% direct quotes (in quotation marks)
|
386 |
+
- Use proper journalistic style
|
387 |
+
- Do not invent information
|
388 |
+
- Be rigorous with the provided facts [/INST]"""
|
389 |
+
|
390 |
+
# Optimize size and max tokens
|
391 |
+
max_tokens = min(int(size * 1.5), 512)
|
392 |
+
|
393 |
+
# Generate article with optimized settings
|
394 |
+
with torch.inference_mode():
|
395 |
+
try:
|
396 |
+
news_article = news_generator(
|
397 |
+
prompt,
|
398 |
+
max_new_tokens=max_tokens,
|
399 |
+
num_return_sequences=1,
|
400 |
+
do_sample=True,
|
401 |
+
temperature=0.7,
|
402 |
+
top_p=0.95,
|
403 |
+
repetition_penalty=1.2,
|
404 |
+
early_stopping=True
|
405 |
+
)
|
406 |
+
|
407 |
+
# Process the generated text
|
408 |
+
if isinstance(news_article, list):
|
409 |
+
news_article = news_article[0]['generated_text']
|
410 |
+
news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
|
411 |
+
|
412 |
+
except Exception as gen_error:
|
413 |
+
logger.error(f"Error in text generation: {str(gen_error)}")
|
414 |
+
raise
|
415 |
+
|
416 |
+
return news_article, raw_transcriptions
|
417 |
+
|
418 |
+
except Exception as e:
|
419 |
+
logger.error(f"Error generating news: {str(e)}")
|
420 |
+
try:
|
421 |
+
# Attempt to recover by resetting and reinitializing models
|
422 |
+
model_manager.reset_models()
|
423 |
+
model_manager.initialize_models()
|
424 |
+
logger.info("Models reinitialized successfully after error")
|
425 |
+
except Exception as reinit_error:
|
426 |
+
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
|
427 |
+
return f"Error generating the news article: {str(e)}", ""
|
428 |
+
|
429 |
+
def create_demo():
|
430 |
+
with gr.Blocks() as demo:
|
431 |
+
gr.Markdown("## Generador de noticias todo en uno")
|
432 |
+
|
433 |
+
with gr.Row():
|
434 |
+
with gr.Column(scale=2):
|
435 |
+
instrucciones = gr.Textbox(
|
436 |
+
label="Instrucciones para la noticia",
|
437 |
+
lines=2
|
438 |
+
)
|
439 |
+
hechos = gr.Textbox(
|
440 |
+
label="Describe los hechos de la noticia",
|
441 |
+
lines=4
|
442 |
+
)
|
443 |
+
tamaño = gr.Number(
|
444 |
+
label="Tamaño del cuerpo de la noticia (en palabras)",
|
445 |
+
value=100
|
446 |
+
)
|
447 |
+
tono = gr.Dropdown(
|
448 |
+
label="Tono de la noticia",
|
449 |
+
choices=["serio", "neutral", "divertido"],
|
450 |
+
value="neutral"
|
451 |
+
)
|
452 |
+
|
453 |
+
with gr.Column(scale=3):
|
454 |
+
inputs_list = [instrucciones, hechos, tamaño, tono]
|
455 |
+
|
456 |
+
with gr.Tabs():
|
457 |
+
for i in range(1, 6):
|
458 |
+
with gr.TabItem(f"Audio/Video {i}"):
|
459 |
+
file = gr.File(
|
460 |
+
label=f"Audio/Video {i}",
|
461 |
+
file_types=["audio", "video"]
|
462 |
+
)
|
463 |
+
nombre = gr.Textbox(
|
464 |
+
label="Nombre",
|
465 |
+
placeholder="Nombre del entrevistado"
|
466 |
+
)
|
467 |
+
cargo = gr.Textbox(
|
468 |
+
label="Cargo",
|
469 |
+
placeholder="Cargo o rol"
|
470 |
+
)
|
471 |
+
inputs_list.extend([file, nombre, cargo])
|
472 |
+
|
473 |
+
for i in range(1, 4):
|
474 |
+
with gr.TabItem(f"Red Social {i}"):
|
475 |
+
social_url = gr.Textbox(
|
476 |
+
label=f"URL de red social {i}",
|
477 |
+
placeholder="https://..."
|
478 |
+
)
|
479 |
+
social_nombre = gr.Textbox(
|
480 |
+
label=f"Nombre de persona/cuenta {i}"
|
481 |
+
)
|
482 |
+
social_contexto = gr.Textbox(
|
483 |
+
label=f"Contexto del contenido {i}",
|
484 |
+
lines=2
|
485 |
+
)
|
486 |
+
inputs_list.extend([social_url, social_nombre, social_contexto])
|
487 |
+
|
488 |
+
for i in range(1, 6):
|
489 |
+
with gr.TabItem(f"URL {i}"):
|
490 |
+
url = gr.Textbox(
|
491 |
+
label=f"URL {i}",
|
492 |
+
placeholder="https://..."
|
493 |
+
)
|
494 |
+
inputs_list.append(url)
|
495 |
+
|
496 |
+
for i in range(1, 6):
|
497 |
+
with gr.TabItem(f"Documento {i}"):
|
498 |
+
documento = gr.File(
|
499 |
+
label=f"Documento {i}",
|
500 |
+
file_types=["pdf", "docx", "xlsx", "csv"],
|
501 |
+
file_count="single"
|
502 |
+
)
|
503 |
+
inputs_list.append(documento)
|
504 |
+
|
505 |
+
gr.Markdown("---")
|
506 |
+
|
507 |
+
with gr.Row():
|
508 |
+
transcripciones_output = gr.Textbox(
|
509 |
+
label="Transcripciones",
|
510 |
+
lines=10,
|
511 |
+
show_copy_button=True
|
512 |
+
)
|
513 |
+
|
514 |
+
gr.Markdown("---")
|
515 |
+
|
516 |
+
with gr.Row():
|
517 |
+
generar = gr.Button("Generar borrador")
|
518 |
+
|
519 |
+
with gr.Row():
|
520 |
+
noticia_output = gr.Textbox(
|
521 |
+
label="Borrador generado",
|
522 |
+
lines=20,
|
523 |
+
show_copy_button=True
|
524 |
+
)
|
525 |
+
|
526 |
+
generar.click(
|
527 |
+
fn=generate_news,
|
528 |
+
inputs=inputs_list,
|
529 |
+
outputs=[noticia_output, transcripciones_output]
|
530 |
+
)
|
531 |
+
|
532 |
+
return demo
|
533 |
+
|
534 |
+
if __name__ == "__main__":
|
535 |
+
demo = create_demo()
|
536 |
+
demo.queue()
|
537 |
+
demo.launch(
|
538 |
+
share=True,
|
539 |
+
server_name="0.0.0.0",
|
540 |
+
server_port=7860
|
541 |
+
)
|