Spaces:
Runtime error
Runtime error
CamiloVega
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,541 +1,235 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
import logging
|
4 |
import os
|
5 |
-
import tempfile
|
6 |
-
import pandas as pd
|
7 |
-
import requests
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
import torch
|
|
|
11 |
import whisper
|
12 |
-
from moviepy.editor import VideoFileClip
|
13 |
from pydub import AudioSegment
|
14 |
-
import
|
15 |
-
import
|
16 |
-
import
|
17 |
-
from
|
18 |
-
import gc
|
19 |
|
20 |
-
# Configure logging
|
21 |
logging.basicConfig(
|
22 |
level=logging.INFO,
|
23 |
-
format='%(asctime)s - %(levelname)s
|
24 |
)
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
def __init__(self):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
def initialize_models(self):
|
46 |
-
"""Initialize models with ZeroGPU compatible settings"""
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
model_max_length=512
|
65 |
-
)
|
66 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
67 |
-
|
68 |
-
# Initialize model with ZeroGPU compatible settings
|
69 |
-
logger.info("Loading model...")
|
70 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
71 |
-
model_name,
|
72 |
-
token=HUGGINGFACE_TOKEN,
|
73 |
-
device_map="auto",
|
74 |
-
torch_dtype=torch.float16,
|
75 |
-
low_cpu_mem_usage=True,
|
76 |
-
use_safetensors=True,
|
77 |
-
max_memory={0: "6GB"},
|
78 |
-
offload_folder="offload",
|
79 |
-
offload_state_dict=True
|
80 |
-
)
|
81 |
-
|
82 |
-
# Create pipeline with minimal settings
|
83 |
-
logger.info("Creating pipeline...")
|
84 |
-
from transformers import pipeline
|
85 |
-
self.news_generator = pipeline(
|
86 |
-
"text-generation",
|
87 |
-
model=self.model,
|
88 |
-
tokenizer=self.tokenizer,
|
89 |
-
device_map="auto",
|
90 |
-
torch_dtype=torch.float16,
|
91 |
-
max_new_tokens=512,
|
92 |
-
do_sample=True,
|
93 |
-
temperature=0.7,
|
94 |
-
top_p=0.95,
|
95 |
-
repetition_penalty=1.2,
|
96 |
-
num_return_sequences=1,
|
97 |
-
early_stopping=True
|
98 |
-
)
|
99 |
-
|
100 |
-
# Load Whisper model with minimal settings
|
101 |
-
logger.info("Loading Whisper model...")
|
102 |
-
self.whisper_model = whisper.load_model(
|
103 |
-
"tiny",
|
104 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
105 |
-
download_root="/tmp/whisper"
|
106 |
-
)
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
|
111 |
except Exception as e:
|
112 |
-
logger.error(f"Error
|
113 |
-
self.reset_models()
|
114 |
raise
|
115 |
|
116 |
-
def
|
117 |
-
"""
|
118 |
try:
|
119 |
-
if
|
120 |
-
|
121 |
-
del self.model
|
122 |
-
|
123 |
-
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
124 |
-
del self.tokenizer
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
|
130 |
-
if hasattr(self.whisper_model, 'cpu'):
|
131 |
-
self.whisper_model.cpu()
|
132 |
-
del self.whisper_model
|
133 |
-
|
134 |
-
self.tokenizer = None
|
135 |
-
self.model = None
|
136 |
-
self.news_generator = None
|
137 |
-
self.whisper_model = None
|
138 |
-
|
139 |
-
if torch.cuda.is_available():
|
140 |
-
torch.cuda.empty_cache()
|
141 |
-
torch.cuda.synchronize()
|
142 |
-
|
143 |
-
import gc
|
144 |
-
gc.collect()
|
145 |
|
146 |
except Exception as e:
|
147 |
-
logger.error(f"
|
148 |
-
|
149 |
-
def check_models_initialized(self):
|
150 |
-
"""Check if all models are properly initialized"""
|
151 |
-
if None in (self.tokenizer, self.model, self.news_generator, self.whisper_model):
|
152 |
-
logger.warning("Models not initialized, attempting to initialize...")
|
153 |
-
self.initialize_models()
|
154 |
-
|
155 |
-
def get_models(self):
|
156 |
-
"""Get initialized models, initializing if necessary"""
|
157 |
-
self.check_models_initialized()
|
158 |
-
return self.tokenizer, self.model, self.news_generator, self.whisper_model
|
159 |
-
|
160 |
-
# Create global model manager instance
|
161 |
-
model_manager = ModelManager()
|
162 |
-
|
163 |
-
@lru_cache(maxsize=32)
|
164 |
-
def download_social_media_video(url):
|
165 |
-
"""Download a video from social media."""
|
166 |
-
ydl_opts = {
|
167 |
-
'format': 'bestaudio/best',
|
168 |
-
'postprocessors': [{
|
169 |
-
'key': 'FFmpegExtractAudio',
|
170 |
-
'preferredcodec': 'mp3',
|
171 |
-
'preferredquality': '192',
|
172 |
-
}],
|
173 |
-
'outtmpl': '%(id)s.%(ext)s',
|
174 |
-
}
|
175 |
-
try:
|
176 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
177 |
-
info_dict = ydl.extract_info(url, download=True)
|
178 |
-
audio_file = f"{info_dict['id']}.mp3"
|
179 |
-
logger.info(f"Video downloaded successfully: {audio_file}")
|
180 |
-
return audio_file
|
181 |
-
except Exception as e:
|
182 |
-
logger.error(f"Error downloading video: {str(e)}")
|
183 |
-
raise
|
184 |
-
|
185 |
-
def convert_video_to_audio(video_file):
|
186 |
-
"""Convert a video file to audio."""
|
187 |
-
try:
|
188 |
-
video = VideoFileClip(video_file)
|
189 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
190 |
-
video.audio.write_audiofile(temp_file.name)
|
191 |
-
logger.info(f"Video converted to audio: {temp_file.name}")
|
192 |
-
return temp_file.name
|
193 |
-
except Exception as e:
|
194 |
-
logger.error(f"Error converting video: {str(e)}")
|
195 |
-
raise
|
196 |
-
|
197 |
-
def preprocess_audio(audio_file):
|
198 |
-
"""Preprocess the audio file to improve quality."""
|
199 |
-
try:
|
200 |
-
audio = AudioSegment.from_file(audio_file)
|
201 |
-
audio = audio.apply_gain(-audio.dBFS + (-20))
|
202 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
203 |
-
audio.export(temp_file.name, format="mp3")
|
204 |
-
logger.info(f"Audio preprocessed: {temp_file.name}")
|
205 |
-
return temp_file.name
|
206 |
-
except Exception as e:
|
207 |
-
logger.error(f"Error preprocessing audio: {str(e)}")
|
208 |
-
raise
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
with torch.inference_mode():
|
228 |
-
result = whisper_model.transcribe(file_path)
|
229 |
-
if not result:
|
230 |
-
raise RuntimeError("Transcription failed to produce results")
|
231 |
-
|
232 |
-
transcription = result.get("text", "Error in transcription")
|
233 |
-
logger.info(f"Transcription completed: {transcription[:50]}...")
|
234 |
-
return transcription
|
235 |
-
except Exception as e:
|
236 |
-
logger.error(f"Error transcribing: {str(e)}")
|
237 |
-
return f"Error processing the file: {str(e)}"
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
"""Read the content of a document."""
|
242 |
try:
|
243 |
if document_path.endswith(".pdf"):
|
244 |
-
|
245 |
-
|
246 |
-
elif document_path.endswith(".docx"):
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
255 |
except Exception as e:
|
256 |
-
logger.error(f"
|
257 |
return f"Error reading document: {str(e)}"
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
"""Read the content of a URL."""
|
262 |
try:
|
263 |
-
response = requests.get(url)
|
264 |
response.raise_for_status()
|
265 |
-
|
266 |
-
return soup.get_text()
|
267 |
except Exception as e:
|
268 |
-
logger.error(f"
|
269 |
return f"Error reading URL: {str(e)}"
|
270 |
|
271 |
-
def
|
272 |
-
"""Process social media content
|
273 |
try:
|
274 |
-
|
275 |
-
|
276 |
-
video_content = transcribe_audio(url)
|
277 |
-
except Exception as e:
|
278 |
-
logger.error(f"Error processing video content: {str(e)}")
|
279 |
-
video_content = None
|
280 |
-
|
281 |
-
return {
|
282 |
-
"text": text_content,
|
283 |
-
"video": video_content
|
284 |
-
}
|
285 |
except Exception as e:
|
286 |
-
logger.error(f"
|
287 |
-
return None
|
288 |
-
|
289 |
-
@spaces.GPU(duration=120)
|
290 |
-
def generate_news(instructions, facts, size, tone, *args):
|
291 |
-
try:
|
292 |
-
tokenizer, _, news_generator, _ = model_manager.get_models()
|
293 |
-
|
294 |
-
knowledge_base = {
|
295 |
-
"instructions": instructions,
|
296 |
-
"facts": facts,
|
297 |
-
"document_content": [],
|
298 |
-
"audio_data": [],
|
299 |
-
"url_content": [],
|
300 |
-
"social_content": []
|
301 |
-
}
|
302 |
-
|
303 |
-
num_audios = 5 * 3
|
304 |
-
num_social_urls = 3 * 3
|
305 |
-
num_urls = 5
|
306 |
-
|
307 |
-
audios = args[:num_audios]
|
308 |
-
social_urls = args[num_audios:num_audios+num_social_urls]
|
309 |
-
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
310 |
-
documents = args[num_audios+num_social_urls+num_urls:]
|
311 |
-
|
312 |
-
for url in urls:
|
313 |
-
if url:
|
314 |
-
content = read_url(url)
|
315 |
-
if content and not content.startswith("Error"):
|
316 |
-
knowledge_base["url_content"].append(content)
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
knowledge_base["document_content"].append(content)
|
323 |
-
|
324 |
-
for i in range(0, len(audios), 3):
|
325 |
-
audio_file, name, position = audios[i:i+3]
|
326 |
-
if audio_file is not None:
|
327 |
-
knowledge_base["audio_data"].append({
|
328 |
-
"audio": audio_file,
|
329 |
-
"name": name,
|
330 |
-
"position": position
|
331 |
-
})
|
332 |
-
|
333 |
-
for i in range(0, len(social_urls), 3):
|
334 |
-
social_url, social_name, social_context = social_urls[i:i+3]
|
335 |
-
if social_url:
|
336 |
-
social_content = process_social_content(social_url)
|
337 |
-
if social_content:
|
338 |
-
knowledge_base["social_content"].append({
|
339 |
-
"url": social_url,
|
340 |
-
"name": social_name,
|
341 |
-
"context": social_context,
|
342 |
-
"text": social_content["text"],
|
343 |
-
"video": social_content["video"]
|
344 |
-
})
|
345 |
-
|
346 |
-
transcriptions_text = ""
|
347 |
-
raw_transcriptions = ""
|
348 |
-
|
349 |
-
for idx, data in enumerate(knowledge_base["audio_data"]):
|
350 |
-
if data["audio"] is not None:
|
351 |
-
transcription = transcribe_audio(data["audio"])
|
352 |
-
if not transcription.startswith("Error"):
|
353 |
-
transcriptions_text += f'"{transcription}" - {data["name"]}, {data["position"]}\n'
|
354 |
-
raw_transcriptions += f'[Audio/Video {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}\n\n'
|
355 |
-
|
356 |
-
for data in knowledge_base["social_content"]:
|
357 |
-
if data["text"] and not str(data["text"]).startswith("Error"):
|
358 |
-
transcriptions_text += f'[Social media text]: "{data["text"][:200]}..." - {data["name"]}, {data["context"]}\n'
|
359 |
-
raw_transcriptions += transcriptions_text + "\n\n"
|
360 |
-
if data["video"] and not str(data["video"]).startswith("Error"):
|
361 |
-
video_transcription = f'[Social media video]: "{data["video"]}" - {data["name"]}, {data["context"]}\n'
|
362 |
-
transcriptions_text += video_transcription
|
363 |
-
raw_transcriptions += video_transcription + "\n\n"
|
364 |
-
|
365 |
-
document_content = "\n\n".join(knowledge_base["document_content"])
|
366 |
-
url_content = "\n\n".join(knowledge_base["url_content"])
|
367 |
-
|
368 |
-
|
369 |
-
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
370 |
-
|
371 |
-
Instructions: {knowledge_base["instructions"]}
|
372 |
-
Facts: {knowledge_base["facts"]}
|
373 |
-
Additional content from documents: {document_content}
|
374 |
-
Additional content from URLs: {url_content}
|
375 |
-
|
376 |
-
Use these transcriptions as direct and indirect quotes:
|
377 |
-
{transcriptions_text}
|
378 |
-
|
379 |
-
Follow these requirements:
|
380 |
-
- Write a title
|
381 |
-
- Write a 15-word hook that complements the title
|
382 |
-
- Write the body with {size} words
|
383 |
-
- Use a {tone} tone
|
384 |
-
- Answer the 5 Ws (Who, What, When, Where, Why) in the first paragraph
|
385 |
-
- Use at least 80% direct quotes (in quotation marks)
|
386 |
-
- Use proper journalistic style
|
387 |
-
- Do not invent information
|
388 |
-
- Be rigorous with the provided facts [/INST]"""
|
389 |
-
|
390 |
-
# Optimize size and max tokens
|
391 |
-
max_tokens = min(int(size * 1.5), 512)
|
392 |
-
|
393 |
-
# Generate article with optimized settings
|
394 |
-
with torch.inference_mode():
|
395 |
-
try:
|
396 |
-
news_article = news_generator(
|
397 |
-
prompt,
|
398 |
-
max_new_tokens=max_tokens,
|
399 |
-
num_return_sequences=1,
|
400 |
-
do_sample=True,
|
401 |
-
temperature=0.7,
|
402 |
-
top_p=0.95,
|
403 |
-
repetition_penalty=1.2,
|
404 |
-
early_stopping=True
|
405 |
-
)
|
406 |
-
|
407 |
-
# Process the generated text
|
408 |
-
if isinstance(news_article, list):
|
409 |
-
news_article = news_article[0]['generated_text']
|
410 |
-
news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
|
411 |
-
|
412 |
-
except Exception as gen_error:
|
413 |
-
logger.error(f"Error in text generation: {str(gen_error)}")
|
414 |
-
raise
|
415 |
-
|
416 |
-
return news_article, raw_transcriptions
|
417 |
-
|
418 |
-
except Exception as e:
|
419 |
-
logger.error(f"Error generating news: {str(e)}")
|
420 |
-
try:
|
421 |
-
# Attempt to recover by resetting and reinitializing models
|
422 |
-
model_manager.reset_models()
|
423 |
-
model_manager.initialize_models()
|
424 |
-
logger.info("Models reinitialized successfully after error")
|
425 |
-
except Exception as reinit_error:
|
426 |
-
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
|
427 |
-
return f"Error generating the news article: {str(e)}", ""
|
428 |
-
|
429 |
-
def create_demo():
|
430 |
with gr.Blocks() as demo:
|
431 |
-
gr.Markdown("
|
432 |
|
433 |
with gr.Row():
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
hechos = gr.Textbox(
|
440 |
-
label="Describe los hechos de la noticia",
|
441 |
-
lines=4
|
442 |
-
)
|
443 |
-
tamaño = gr.Number(
|
444 |
-
label="Tamaño del cuerpo de la noticia (en palabras)",
|
445 |
-
value=100
|
446 |
-
)
|
447 |
-
tono = gr.Dropdown(
|
448 |
-
label="Tono de la noticia",
|
449 |
-
choices=["serio", "neutral", "divertido"],
|
450 |
-
value="neutral"
|
451 |
-
)
|
452 |
-
|
453 |
-
with gr.Column(scale=3):
|
454 |
-
inputs_list = [instrucciones, hechos, tamaño, tono]
|
455 |
-
|
456 |
-
with gr.Tabs():
|
457 |
-
for i in range(1, 6):
|
458 |
-
with gr.TabItem(f"Audio/Video {i}"):
|
459 |
-
file = gr.File(
|
460 |
-
label=f"Audio/Video {i}",
|
461 |
-
file_types=["audio", "video"]
|
462 |
-
)
|
463 |
-
nombre = gr.Textbox(
|
464 |
-
label="Nombre",
|
465 |
-
placeholder="Nombre del entrevistado"
|
466 |
-
)
|
467 |
-
cargo = gr.Textbox(
|
468 |
-
label="Cargo",
|
469 |
-
placeholder="Cargo o rol"
|
470 |
-
)
|
471 |
-
inputs_list.extend([file, nombre, cargo])
|
472 |
-
|
473 |
-
for i in range(1, 4):
|
474 |
-
with gr.TabItem(f"Red Social {i}"):
|
475 |
-
social_url = gr.Textbox(
|
476 |
-
label=f"URL de red social {i}",
|
477 |
-
placeholder="https://..."
|
478 |
-
)
|
479 |
-
social_nombre = gr.Textbox(
|
480 |
-
label=f"Nombre de persona/cuenta {i}"
|
481 |
-
)
|
482 |
-
social_contexto = gr.Textbox(
|
483 |
-
label=f"Contexto del contenido {i}",
|
484 |
-
lines=2
|
485 |
-
)
|
486 |
-
inputs_list.extend([social_url, social_nombre, social_contexto])
|
487 |
-
|
488 |
-
for i in range(1, 6):
|
489 |
-
with gr.TabItem(f"URL {i}"):
|
490 |
-
url = gr.Textbox(
|
491 |
-
label=f"URL {i}",
|
492 |
-
placeholder="https://..."
|
493 |
-
)
|
494 |
-
inputs_list.append(url)
|
495 |
-
|
496 |
-
for i in range(1, 6):
|
497 |
-
with gr.TabItem(f"Documento {i}"):
|
498 |
-
documento = gr.File(
|
499 |
-
label=f"Documento {i}",
|
500 |
-
file_types=["pdf", "docx", "xlsx", "csv"],
|
501 |
-
file_count="single"
|
502 |
-
)
|
503 |
-
inputs_list.append(documento)
|
504 |
-
|
505 |
-
gr.Markdown("---")
|
506 |
-
|
507 |
-
with gr.Row():
|
508 |
-
transcripciones_output = gr.Textbox(
|
509 |
-
label="Transcripciones",
|
510 |
-
lines=10,
|
511 |
-
show_copy_button=True
|
512 |
-
)
|
513 |
-
|
514 |
-
gr.Markdown("---")
|
515 |
-
|
516 |
with gr.Row():
|
517 |
-
|
|
|
|
|
|
|
518 |
|
519 |
with gr.Row():
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
if __name__ == "__main__":
|
535 |
-
|
536 |
-
demo.queue()
|
537 |
-
demo.launch(
|
538 |
-
share=True,
|
539 |
-
server_name="0.0.0.0",
|
540 |
-
server_port=7860
|
541 |
-
)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import whisper
|
|
|
7 |
from pydub import AudioSegment
|
8 |
+
import requests
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
from typing import Optional, Dict, Any
|
11 |
+
from dataclasses import dataclass
|
|
|
12 |
|
|
|
13 |
logging.basicConfig(
|
14 |
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(levelname)s) %(message)s'
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
@dataclass
|
20 |
+
class NewsConfig:
|
21 |
+
model_name: str = "meta-llama/Llama-2-3b-chat-hf"
|
22 |
+
max_tokens: int = 256
|
23 |
+
temperature: float = 0.7
|
24 |
+
top_p: float = 0.95
|
25 |
+
|
26 |
+
class NewsGenerator:
|
|
|
27 |
def __init__(self):
|
28 |
+
self.config = NewsConfig()
|
29 |
+
self.tokenizer = None
|
30 |
+
self.model = None
|
31 |
+
self.whisper_model = None
|
32 |
+
self._initialize_models()
|
33 |
+
|
34 |
+
def _initialize_models(self):
|
35 |
+
"""Initialize models with efficient settings"""
|
|
|
|
|
36 |
try:
|
37 |
+
if not self.tokenizer:
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
39 |
+
self.config.model_name,
|
40 |
+
use_fast=True,
|
41 |
+
model_max_length=self.config.max_tokens
|
42 |
+
)
|
43 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
44 |
+
|
45 |
+
if not self.model:
|
46 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
self.config.model_name,
|
48 |
+
device_map="auto",
|
49 |
+
torch_dtype=torch.float16,
|
50 |
+
low_cpu_mem_usage=True,
|
51 |
+
use_safetensors=True
|
52 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
if not self.whisper_model:
|
55 |
+
self.whisper_model = whisper.load_model(
|
56 |
+
"tiny",
|
57 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
58 |
+
)
|
59 |
|
60 |
except Exception as e:
|
61 |
+
logger.error(f"Error initializing models: {str(e)}")
|
|
|
62 |
raise
|
63 |
|
64 |
+
def transcribe_audio(self, audio_file: str) -> str:
|
65 |
+
"""Transcribe audio file with improved error handling"""
|
66 |
try:
|
67 |
+
if not audio_file:
|
68 |
+
return "Error: No audio file provided"
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
result = self.whisper_model.transcribe(audio_file)
|
71 |
+
return result.get("text", "Transcription failed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
except Exception as e:
|
74 |
+
logger.error(f"Audio transcription error: {str(e)}")
|
75 |
+
return f"Error transcribing audio: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
def generate_news(self, prompt: str) -> str:
|
78 |
+
"""Generate news article with optimized parameters"""
|
79 |
+
try:
|
80 |
+
with torch.inference_mode():
|
81 |
+
outputs = self.model.generate(
|
82 |
+
inputs=self.tokenizer(prompt, return_tensors="pt").input_ids,
|
83 |
+
max_new_tokens=self.config.max_tokens,
|
84 |
+
temperature=self.config.temperature,
|
85 |
+
top_p=self.config.top_p,
|
86 |
+
do_sample=True,
|
87 |
+
early_stopping=True
|
88 |
+
)
|
89 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"News generation error: {str(e)}")
|
92 |
+
return f"Error generating news: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
def read_document(document_path: str) -> str:
|
95 |
+
"""Read document content with better error handling"""
|
|
|
96 |
try:
|
97 |
if document_path.endswith(".pdf"):
|
98 |
+
with fitz.open(document_path) as doc:
|
99 |
+
return "\n".join(page.get_text() for page in doc)
|
100 |
+
elif document_path.endswith((".docx", ".xlsx", ".csv")):
|
101 |
+
content = ""
|
102 |
+
if document_path.endswith(".docx"):
|
103 |
+
import docx
|
104 |
+
doc = docx.Document(document_path)
|
105 |
+
content = "\n".join(p.text for p in doc.paragraphs)
|
106 |
+
elif document_path.endswith(".xlsx"):
|
107 |
+
import pandas as pd
|
108 |
+
content = pd.read_excel(document_path).to_string()
|
109 |
+
elif document_path.endswith(".csv"):
|
110 |
+
import pandas as pd
|
111 |
+
content = pd.read_csv(document_path).to_string()
|
112 |
+
return content
|
113 |
+
return "Unsupported file type"
|
114 |
except Exception as e:
|
115 |
+
logger.error(f"Document reading error: {str(e)}")
|
116 |
return f"Error reading document: {str(e)}"
|
117 |
|
118 |
+
def read_url(url: str) -> str:
|
119 |
+
"""Read URL content with better handling"""
|
|
|
120 |
try:
|
121 |
+
response = requests.get(url, timeout=10)
|
122 |
response.raise_for_status()
|
123 |
+
return BeautifulSoup(response.content, 'html.parser').get_text()
|
|
|
124 |
except Exception as e:
|
125 |
+
logger.error(f"URL reading error: {str(e)}")
|
126 |
return f"Error reading URL: {str(e)}"
|
127 |
|
128 |
+
def process_social_media(url: str) -> Dict[str, Any]:
|
129 |
+
"""Process social media content with improved handling"""
|
130 |
try:
|
131 |
+
text = read_url(url)
|
132 |
+
return {"text": text, "video": None}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
except Exception as e:
|
134 |
+
logger.error(f"Social media processing error: {str(e)}")
|
135 |
+
return {"text": None, "video": None}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
def main():
|
138 |
+
"""Main function to create and run the Gradio app"""
|
139 |
+
news_generator = NewsGenerator()
|
140 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
with gr.Blocks() as demo:
|
142 |
+
gr.Markdown("# Generador de Noticias Optimizado")
|
143 |
|
144 |
with gr.Row():
|
145 |
+
instrucciones = gr.Textbox(label="Instrucciones", lines=2)
|
146 |
+
hechos = gr.Textbox(label="Hechos", lines=4)
|
147 |
+
tamaño = gr.Number(label="Tamaño (palabras)", value=100)
|
148 |
+
tono = gr.Dropdown(label="Tono", choices=["serio", "neutral", "divertido"], value="neutral")
|
149 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
with gr.Row():
|
151 |
+
documento = gr.File(label="Documento", file_types=["pdf", "docx", "xlsx", "csv"])
|
152 |
+
audio = gr.File(label="Audio/Video", file_types=["audio", "video"])
|
153 |
+
url = gr.Textbox(label="URL")
|
154 |
+
social_url = gr.Textbox(label="URL de red social")
|
155 |
|
156 |
with gr.Row():
|
157 |
+
generar = gr.Button("Generar Noticia")
|
158 |
+
noticia = gr.Textbox(label="Noticia Generada", lines=20)
|
159 |
+
transcripciones = gr.Textbox(label="Transcripciones", lines=10)
|
160 |
+
|
161 |
+
def generate_news_output(
|
162 |
+
instrucciones: str,
|
163 |
+
hechos: str,
|
164 |
+
tamaño: int,
|
165 |
+
tono: str,
|
166 |
+
documento: Optional[gr.File],
|
167 |
+
audio: Optional[gr.File],
|
168 |
+
url: Optional[str],
|
169 |
+
social_url: Optional[str]
|
170 |
+
):
|
171 |
+
try:
|
172 |
+
# Process document
|
173 |
+
if documento:
|
174 |
+
doc_content = read_document(documento.name)
|
175 |
+
else:
|
176 |
+
doc_content = ""
|
177 |
+
|
178 |
+
# Process audio
|
179 |
+
if audio:
|
180 |
+
audio_content = news_generator.transcribe_audio(audio.name)
|
181 |
+
else:
|
182 |
+
audio_content = ""
|
183 |
+
|
184 |
+
# Process URL
|
185 |
+
if url:
|
186 |
+
url_content = read_url(url)
|
187 |
+
else:
|
188 |
+
url_content = ""
|
189 |
+
|
190 |
+
# Process social media
|
191 |
+
if social_url:
|
192 |
+
social_content = process_social_media(social_url)
|
193 |
+
else:
|
194 |
+
social_content = {"text": "", "video": ""}
|
195 |
+
|
196 |
+
# Generate prompt
|
197 |
+
prompt = f"""[INST] Escribe una noticia basada en la siguiente información:
|
198 |
+
Instrucciones: {instrucciones}
|
199 |
+
Hechos: {hechos}
|
200 |
+
Documento: {doc_content}
|
201 |
+
Audio: {audio_content}
|
202 |
+
URL: {url_content}
|
203 |
+
Red Social: {social_content['text']}
|
204 |
+
Video: {social_content['video'] if social_content else ''}
|
205 |
+
|
206 |
+
Parámetros:
|
207 |
+
- Tamaño: {tamaño} palabras
|
208 |
+
- Tono: {tono}
|
209 |
+
- Incluye: Título, gancho, cuerpo, 5W
|
210 |
+
- Estilo periodístico
|
211 |
+
[/INST]"""
|
212 |
+
|
213 |
+
# Generate news
|
214 |
+
news = news_generator.generate_news(prompt)
|
215 |
+
return news, f"Transcripciones generadas correctamente"
|
216 |
+
|
217 |
+
except Exception as e:
|
218 |
+
return f"Error generando noticia: {str(e)}", f"Error: {str(e)}"
|
219 |
+
|
220 |
+
generate_news_output(
|
221 |
+
instrucciones,
|
222 |
+
hechos,
|
223 |
+
tamaño,
|
224 |
+
tono,
|
225 |
+
documento,
|
226 |
+
audio,
|
227 |
+
url,
|
228 |
+
social_url
|
229 |
+
)(generar, [noticia, transcripciones])
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
demo.launch()
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|