Spaces:
Runtime error
Runtime error
File size: 9,699 Bytes
fe33dd6 55b44b5 fe33dd6 33649cd 8a75de9 709816c 7d33fb7 9c89421 7d33fb7 71d11a0 9429d1c 71d11a0 9429d1c 6fd5709 9429d1c 44aeeb4 9429d1c 624a2c3 71d11a0 624a2c3 9429d1c 624a2c3 9429d1c 624a2c3 9429d1c 624a2c3 fe33dd6 02ddc4c fe33dd6 2de0a92 89cadb8 fe33dd6 89cadb8 2de0a92 89cadb8 11a0b6f 89cadb8 11a0b6f 89cadb8 11a0b6f 8b143c9 11a0b6f 89cadb8 11a0b6f 89cadb8 24b6e78 89cadb8 24b6e78 fe33dd6 24b6e78 89cadb8 1b13b28 efb2125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
""" CODE TO TRY IN COLAB
!pip install -q transformers datasets torch gradio console_logging numpy
import gradio as gr
import torch
from datasets import load_dataset
from console_logging.console import Console
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import TrainingArguments, Trainer
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
from transformers import EvalPrediction
import torch
console = Console()
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
#labels = [label for label in dataset['train'].features.keys() if label not in ['text']]
labels = ["Bearish", "Bullish", "Neutral"]
def preprocess_data(examples):
# take a batch of texts
text = examples["text"]
# encode them
encoding = tokenizer(text, padding="max_length", truncation=True, max_length=128)
# add labels
#labels_batch = {k: examples[k] for k in examples.keys() if k in labels}
labels_batch = {'Bearish': [], 'Bullish': [], 'Neutral': []}
for i in range (len(examples['label'])):
labels_batch["Bearish"].append(False)
labels_batch["Bullish"].append(False)
labels_batch["Neutral"].append(False)
if examples['label'][i] == 0:
labels_batch["Bearish"][i] = True
elif examples['label'][i] == 1:
labels_batch["Bullish"][i] = True
else:
labels_batch["Neutral"][i] = True
# create numpy array of shape (batch_size, num_labels)
labels_matrix = np.zeros((len(text), len(labels)))
# fill numpy array
for idx, label in enumerate(labels):
labels_matrix[:, idx] = labels_batch[label]
encoding["labels"] = labels_matrix.tolist()
return encoding
encoded_dataset = dataset.map(preprocess_data, batched=True, remove_columns=dataset['train'].column_names)
encoded_dataset.set_format("torch")
id2label = {idx:label for idx, label in enumerate(labels)}
label2id = {label:idx for idx, label in enumerate(labels)}
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased",
problem_type="multi_label_classification",
num_labels=len(labels),
id2label=id2label,
label2id=label2id)
batch_size = 8
metric_name = "f1"
args = TrainingArguments(
f"bert-finetuned-sem_eval-english",
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=5,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
#push_to_hub=True,
)
# source: https://jesusleal.io/2021/04/21/Longformer-multilabel-classification/
def multi_label_metrics(predictions, labels, threshold=0.5):
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels)
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(torch.Tensor(predictions))
# next, use threshold to turn them into integer predictions
y_pred = np.zeros(probs.shape)
y_pred[np.where(probs >= threshold)] = 1
# finally, compute metrics
y_true = labels
f1_micro_average = f1_score(y_true=y_true, y_pred=y_pred, average='micro')
roc_auc = roc_auc_score(y_true, y_pred, average = 'micro')
accuracy = accuracy_score(y_true, y_pred)
# return as dictionary
metrics = {'f1': f1_micro_average,
'roc_auc': roc_auc,
'accuracy': accuracy}
return metrics
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions,
tuple) else p.predictions
result = multi_label_metrics(
predictions=preds,
labels=p.label_ids)
return result
trainer = Trainer(
model,
args,
train_dataset=encoded_dataset["train"],
eval_dataset=encoded_dataset["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
trainer.evaluate()
"""
# Version to gradio and HuggingFace, doesn't works like the colab version, this version use the exported model, possible without the fine tuning
import torch
from datasets import load_dataset
from console_logging.console import Console
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import TrainingArguments, Trainer
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
from transformers import EvalPrediction
import torch
import gradio as gr
console = Console()
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
#labels = [label for label in dataset['train'].features.keys() if label not in ['text']]
labels = ["Bearish", "Bullish", "Neutral"]
def preprocess_data(examples):
# take a batch of texts
text = examples["text"]
# encode them
encoding = tokenizer(text, padding="max_length", truncation=True, max_length=128)
# add labels
#labels_batch = {k: examples[k] for k in examples.keys() if k in labels}
labels_batch = {'Bearish': [], 'Bullish': [], 'Neutral': []}
for i in range (len(examples['label'])):
labels_batch["Bearish"].append(False)
labels_batch["Bullish"].append(False)
labels_batch["Neutral"].append(False)
if examples['label'][i] == 0:
labels_batch["Bearish"][i] = True
elif examples['label'][i] == 1:
labels_batch["Bullish"][i] = True
else:
labels_batch["Neutral"][i] = True
# create numpy array of shape (batch_size, num_labels)
labels_matrix = np.zeros((len(text), len(labels)))
# fill numpy array
for idx, label in enumerate(labels):
labels_matrix[:, idx] = labels_batch[label]
encoding["labels"] = labels_matrix.tolist()
return encoding
encoded_dataset = dataset.map(preprocess_data, batched=True, remove_columns=dataset['train'].column_names)
encoded_dataset.set_format("torch")
id2label = {idx:label for idx, label in enumerate(labels)}
label2id = {label:idx for idx, label in enumerate(labels)}
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased",
problem_type="multi_label_classification",
num_labels=len(labels),
id2label=id2label,
label2id=label2id)
batch_size = 8
metric_name = "f1"
args = TrainingArguments(
f"bert-finetuned-sem_eval-english",
evaluation_strategy = "epoch",
save_strategy = "epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=5,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model=metric_name,
#push_to_hub=True,
)
# source: https://jesusleal.io/2021/04/21/Longformer-multilabel-classification/
def multi_label_metrics(predictions, labels, threshold=0.5):
# first, apply sigmoid on predictions which are of shape (batch_size, num_labels)
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(torch.Tensor(predictions))
# next, use threshold to turn them into integer predictions
y_pred = np.zeros(probs.shape)
y_pred[np.where(probs >= threshold)] = 1
# finally, compute metrics
y_true = labels
f1_micro_average = f1_score(y_true=y_true, y_pred=y_pred, average='micro')
roc_auc = roc_auc_score(y_true, y_pred, average = 'micro')
accuracy = accuracy_score(y_true, y_pred)
# return as dictionary
metrics = {'f1': f1_micro_average,
'roc_auc': roc_auc,
'accuracy': accuracy}
return metrics
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions,
tuple) else p.predictions
result = multi_label_metrics(
predictions=preds,
labels=p.label_ids)
return result
text_ = "Bitcoin to the moon"
model = torch.load("./model.pt", map_location=torch.device('cpu'))
trainer = Trainer(
model,
args,
train_dataset=encoded_dataset["train"],
eval_dataset=encoded_dataset["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def predict(text):
encoding = tokenizer(text, return_tensors="pt")
encoding = {k: v.to(trainer.model.device) for k,v in encoding.items()}
outputs = trainer.model(**encoding)
logits = outputs.logits
logits.shape
# apply sigmoid + threshold
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
# turn predicted id's into actual label names
return([id2label[idx] for idx, label in enumerate(predictions) if label == 1.0])
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Sentiment text!!!
""")
inp = [gr.Textbox(label='Text or tweet text', placeholder="Insert text")]
out = gr.Textbox(label='Output')
text_button = gr.Button("Get the text sentiment")
text_button.click(predict, inputs=inp, outputs=out)
demo.launch()
###############
trainer.train()
trainer.evaluate()
|