Berbex commited on
Commit
11a0b6f
Β·
1 Parent(s): 02ddc4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -20
app.py CHANGED
@@ -131,36 +131,31 @@ model = torch.load("./model.pt", map_location=torch.device('cpu'))
131
 
132
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
133
 
134
- text = "Bitcoin to the moon"
135
 
136
- encoding = tokenizer(text, return_tensors="pt")
137
- encoding = {k: v.to(trainer.model.device) for k,v in encoding.items()}
138
 
139
- outputs = trainer.model(**encoding)
140
 
141
- logits = outputs.logits
142
- logits.shape
143
-
144
-
145
- # apply sigmoid + threshold
146
- sigmoid = torch.nn.Sigmoid()
147
- probs = sigmoid(logits.squeeze().cpu())
148
- predictions = np.zeros(probs.shape)
149
- predictions[np.where(probs >= 0.5)] = 1
150
- # turn predicted id's into actual label names
151
- predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
152
- console.log("a")
153
- console.log(predicted_labels)
154
- console.log("a")
155
 
156
 
 
 
 
 
 
 
 
157
 
158
 
159
 
160
- inp = [gr.Textbox(label='API Key', placeholder="What is your API Key?"), gr.Textbox(label='Audio File URL', placeholder="Audio file URL?")]
161
  out = gr.Textbox(label='Output')
162
  text_button = gr.Button("Flip")
163
- text_button.click(audio_to_text, inputs=inp, outputs=out)
164
 
165
  interface = gr.Interface.load(input=inp,output=out,
166
  title = title,
 
131
 
132
  tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
133
 
134
+ def predict(text):
135
 
136
+ encoding = tokenizer(text, return_tensors="pt")
137
+ encoding = {k: v.to(trainer.model.device) for k,v in encoding.items()}
138
 
139
+ outputs = trainer.model(**encoding)
140
 
141
+ logits = outputs.logits
142
+ logits.shape
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
 
145
+ # apply sigmoid + threshold
146
+ sigmoid = torch.nn.Sigmoid()
147
+ probs = sigmoid(logits.squeeze().cpu())
148
+ predictions = np.zeros(probs.shape)
149
+ predictions[np.where(probs >= 0.5)] = 1
150
+ # turn predicted id's into actual label names
151
+ return([id2label[idx] for idx, label in enumerate(predictions) if label == 1.0])
152
 
153
 
154
 
155
+ inp = [gr.Textbox(label='Text or tweet text', placeholder="Insert text")]
156
  out = gr.Textbox(label='Output')
157
  text_button = gr.Button("Flip")
158
+ text_button.click(predict, inputs=inp, outputs=out)
159
 
160
  interface = gr.Interface.load(input=inp,output=out,
161
  title = title,