Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,41 @@ console = Console()
|
|
6 |
|
7 |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
|
8 |
|
9 |
-
console.log( dataset['train'][:10] )
|
10 |
-
|
11 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
12 |
|
13 |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
14 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def sentiment_score(review):
|
17 |
tokens = tokenizer.encode(review, return_tensors='pt')
|
18 |
result = model(tokens)
|
|
|
6 |
|
7 |
dataset = load_dataset("zeroshot/twitter-financial-news-sentiment", )
|
8 |
|
|
|
|
|
9 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
10 |
|
11 |
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
12 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
13 |
|
14 |
+
labels = [label for label in dataset['train'].features.keys() if label not in ['text']]
|
15 |
+
|
16 |
+
console.log( labels )
|
17 |
+
def preprocess_data(examples):
|
18 |
+
# take a batch of texts
|
19 |
+
text = examples["text"]
|
20 |
+
# encode them
|
21 |
+
encoding = tokenizer(text, padding="max_length", truncation=True, max_length=128)
|
22 |
+
# add labels
|
23 |
+
labels_batch = {k: examples[k] for k in examples.keys() if k in labels}
|
24 |
+
# create numpy array of shape (batch_size, num_labels)
|
25 |
+
labels_matrix = np.zeros((len(text), len(labels)))
|
26 |
+
# fill numpy array
|
27 |
+
for idx, label in enumerate(labels):
|
28 |
+
labels_matrix[:, idx] = labels_batch[label]
|
29 |
+
|
30 |
+
encoding["labels"] = labels_matrix.tolist()
|
31 |
+
|
32 |
+
return encoding
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
def sentiment_score(review):
|
45 |
tokens = tokenizer.encode(review, return_tensors='pt')
|
46 |
result = model(tokens)
|