File size: 6,248 Bytes
53319ee aa1bca4 ec2091c 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee aa1bca4 64ec002 aa1bca4 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee ec2091c 53319ee ec2091c 53319ee 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee 64ec002 53319ee aa1bca4 53319ee aa1bca4 53319ee 64ec002 53319ee 64ec002 53319ee ec2091c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline
import cv2
import numpy as np
import tempfile
import os
# Initialize the object detection pipeline
object_detector = pipeline("object-detection",
model="facebook/detr-resnet-50")
def draw_bounding_boxes(frame, detections):
"""
Draws bounding boxes on the video frame based on the detections.
"""
# Convert numpy array to PIL Image
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
draw = ImageDraw.Draw(pil_image)
# Use default font
font = ImageFont.load_default()
for detection in detections:
box = detection['box']
xmin = int(box['xmin'])
ymin = int(box['ymin'])
xmax = int(box['xmax'])
ymax = int(box['ymax'])
# Draw the bounding box
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
# Create label with score
label = detection['label']
score = detection['score']
text = f"{label} {score:.2f}"
# Draw text with background rectangle for visibility
text_bbox = draw.textbbox((xmin, ymin), text, font=font)
draw.rectangle([
(text_bbox[0], text_bbox[1]),
(text_bbox[2], text_bbox[3])
], fill="red")
draw.text((xmin, ymin), text, fill="white", font=font)
# Convert back to numpy array
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return frame_with_boxes
def create_output_writer(cap, output_path):
"""
Create video writer with different codecs, trying multiple options
"""
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Try different codecs
codecs = [
('mp4v', '.mp4'),
('avc1', '.mp4'),
('XVID', '.avi'),
('MJPG', '.avi')
]
for codec, ext in codecs:
try:
output_file = os.path.splitext(output_path)[0] + ext
fourcc = cv2.VideoWriter_fourcc(*codec)
out = cv2.VideoWriter(output_file, fourcc, fps, (frame_width, frame_height))
if out is not None and out.isOpened():
return out, output_file
except Exception as e:
print(f"Failed with codec {codec}: {str(e)}")
continue
raise ValueError("Could not initialize any video codec")
def frame_to_pil(frame):
"""Convert OpenCV frame to PIL Image"""
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return Image.fromarray(rgb_frame)
def process_video(video_path, progress=gr.Progress()):
"""
Process the video file and return the path to the processed video
"""
try:
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError("Could not open video file")
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Create output directory if it doesn't exist
output_dir = os.path.join(os.path.expanduser("~"), "Videos", "ObjectDetection")
os.makedirs(output_dir, exist_ok=True)
# Create output path
output_path = os.path.join(output_dir, "output_video.mp4")
# Initialize video writer
out, output_path = create_output_writer(cap, output_path)
frame_count = 0
process_every_n_frames = 1 # Process every frame
progress(0, desc="Processing video...")
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Process frame
if frame_count % process_every_n_frames == 0:
# Convert frame to PIL Image for the model
pil_frame = frame_to_pil(frame)
try:
# Detect objects
detections = object_detector(pil_frame)
# Draw bounding boxes
frame = draw_bounding_boxes(frame, detections)
except Exception as e:
print(f"Error processing frame {frame_count}: {str(e)}")
# Continue with the original frame if detection fails
pass
# Write the frame
out.write(frame)
# Update progress
progress((frame_count / total_frames), desc=f"Processing frame {frame_count}/{total_frames}")
# Release everything
cap.release()
out.release()
# Verify the output file exists and has size
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
raise ValueError("Output video file is empty or was not created")
return output_path
except Exception as e:
print(f"Error processing video: {str(e)}")
raise gr.Error(f"Error processing video: {str(e)}")
def detect_objects_in_video(video):
"""
Gradio interface function for video object detection
"""
if video is None:
raise gr.Error("Please upload a video file")
try:
# Process the video
output_path = process_video(video)
return output_path
except Exception as e:
raise gr.Error(f"Error during video processing: {str(e)}")
# Create the Gradio interface
demo = gr.Interface(
fn=detect_objects_in_video,
inputs=[
gr.Video(label="Upload Video")
],
outputs=[
gr.Video(label="Processed Video")
],
title="@GenAILearniverse Project: Video Object Detection",
description="""
Upload a video to detect and track objects within it.
The application will process the video and draw bounding boxes around detected objects
with their labels and confidence scores.
Note: Processing may take some time depending on the video length.
""",
examples=[],
cache_examples=False
)
if __name__ == "__main__":
demo.launch() |