Muhammad Anas Akhtar
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
from transformers import pipeline
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Initialize the object detection pipeline
|
10 |
+
object_detector = pipeline("object-detection",
|
11 |
+
model="facebook/detr-resnet-50")
|
12 |
+
|
13 |
+
def draw_bounding_boxes(frame, detections):
|
14 |
+
"""
|
15 |
+
Draws bounding boxes on the video frame based on the detections.
|
16 |
+
"""
|
17 |
+
# Convert numpy array to PIL Image
|
18 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
19 |
+
pil_image = Image.fromarray(frame_rgb)
|
20 |
+
draw = ImageDraw.Draw(pil_image)
|
21 |
+
|
22 |
+
# Use default font
|
23 |
+
font = ImageFont.load_default()
|
24 |
+
|
25 |
+
for detection in detections:
|
26 |
+
box = detection['box']
|
27 |
+
xmin = int(box['xmin'])
|
28 |
+
ymin = int(box['ymin'])
|
29 |
+
xmax = int(box['xmax'])
|
30 |
+
ymax = int(box['ymax'])
|
31 |
+
|
32 |
+
# Draw the bounding box
|
33 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
34 |
+
|
35 |
+
# Create label with score
|
36 |
+
label = detection['label']
|
37 |
+
score = detection['score']
|
38 |
+
text = f"{label} {score:.2f}"
|
39 |
+
|
40 |
+
# Draw text with background rectangle for visibility
|
41 |
+
text_bbox = draw.textbbox((xmin, ymin), text, font=font)
|
42 |
+
draw.rectangle([
|
43 |
+
(text_bbox[0], text_bbox[1]),
|
44 |
+
(text_bbox[2], text_bbox[3])
|
45 |
+
], fill="red")
|
46 |
+
draw.text((xmin, ymin), text, fill="white", font=font)
|
47 |
+
|
48 |
+
# Convert back to numpy array
|
49 |
+
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
50 |
+
return frame_with_boxes
|
51 |
+
|
52 |
+
def process_video(video_path):
|
53 |
+
"""
|
54 |
+
Process the video file and return the path to the processed video
|
55 |
+
"""
|
56 |
+
try:
|
57 |
+
# Open the video file
|
58 |
+
cap = cv2.VideoCapture(video_path)
|
59 |
+
if not cap.isOpened():
|
60 |
+
return None
|
61 |
+
|
62 |
+
# Get video properties
|
63 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
64 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
65 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
66 |
+
|
67 |
+
# Create temporary file for output video
|
68 |
+
temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
69 |
+
output_path = temp_output.name
|
70 |
+
temp_output.close()
|
71 |
+
|
72 |
+
# Initialize video writer
|
73 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
74 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
75 |
+
|
76 |
+
frame_count = 0
|
77 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
78 |
+
|
79 |
+
# Process every nth frame to speed up processing
|
80 |
+
process_every_n_frames = 2 # Adjust this value to process more or fewer frames
|
81 |
+
|
82 |
+
while cap.isOpened():
|
83 |
+
ret, frame = cap.read()
|
84 |
+
if not ret:
|
85 |
+
break
|
86 |
+
|
87 |
+
frame_count += 1
|
88 |
+
|
89 |
+
# Only process every nth frame
|
90 |
+
if frame_count % process_every_n_frames == 0:
|
91 |
+
# Convert frame to RGB for the model
|
92 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
93 |
+
|
94 |
+
# Detect objects
|
95 |
+
detections = object_detector(frame_rgb)
|
96 |
+
|
97 |
+
# Draw bounding boxes
|
98 |
+
frame = draw_bounding_boxes(frame, detections)
|
99 |
+
|
100 |
+
# Write the frame
|
101 |
+
out.write(frame)
|
102 |
+
|
103 |
+
# Print progress
|
104 |
+
progress = (frame_count / total_frames) * 100
|
105 |
+
print(f"Processing: {progress:.1f}% complete", end='\r')
|
106 |
+
|
107 |
+
# Release everything
|
108 |
+
cap.release()
|
109 |
+
out.release()
|
110 |
+
|
111 |
+
return output_path
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Error processing video: {str(e)}")
|
115 |
+
return None
|
116 |
+
|
117 |
+
def detect_objects_in_video(video):
|
118 |
+
"""
|
119 |
+
Gradio interface function for video object detection
|
120 |
+
"""
|
121 |
+
if video is None:
|
122 |
+
return None
|
123 |
+
|
124 |
+
try:
|
125 |
+
# Process the video
|
126 |
+
output_path = process_video(video)
|
127 |
+
if output_path is None:
|
128 |
+
return None
|
129 |
+
|
130 |
+
return output_path
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Error during video processing: {str(e)}")
|
134 |
+
return None
|
135 |
+
|
136 |
+
# Create the Gradio interface
|
137 |
+
demo = gr.Interface(
|
138 |
+
fn=detect_objects_in_video,
|
139 |
+
inputs=[
|
140 |
+
gr.Video(label="Upload Video")
|
141 |
+
],
|
142 |
+
outputs=[
|
143 |
+
gr.Video(label="Processed Video")
|
144 |
+
],
|
145 |
+
title="@GenAILearniverse Project: Video Object Detection",
|
146 |
+
description="""
|
147 |
+
Upload a video to detect and track objects within it.
|
148 |
+
The application will process the video and draw bounding boxes around detected objects
|
149 |
+
with their labels and confidence scores.
|
150 |
+
Note: Processing may take some time depending on the video length.
|
151 |
+
"""
|
152 |
+
)
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
demo.launch()
|