Muhammad Anas Akhtar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -49,7 +49,7 @@ def draw_bounding_boxes(frame, detections):
|
|
49 |
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
50 |
return frame_with_boxes
|
51 |
|
52 |
-
def process_video(video_path):
|
53 |
"""
|
54 |
Process the video file and return the path to the processed video
|
55 |
"""
|
@@ -57,36 +57,37 @@ def process_video(video_path):
|
|
57 |
# Open the video file
|
58 |
cap = cv2.VideoCapture(video_path)
|
59 |
if not cap.isOpened():
|
60 |
-
|
61 |
|
62 |
# Get video properties
|
63 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
64 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
65 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
66 |
-
|
67 |
-
# Create temporary file for output video
|
68 |
-
temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
69 |
-
output_path = temp_output.name
|
70 |
-
temp_output.close()
|
71 |
|
72 |
-
#
|
73 |
-
|
|
|
|
|
|
|
74 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
75 |
|
|
|
|
|
|
|
76 |
frame_count = 0
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
process_every_n_frames = 2 # Adjust this value to process more or fewer frames
|
81 |
|
82 |
-
while
|
83 |
ret, frame = cap.read()
|
84 |
if not ret:
|
85 |
break
|
86 |
|
87 |
frame_count += 1
|
88 |
|
89 |
-
#
|
90 |
if frame_count % process_every_n_frames == 0:
|
91 |
# Convert frame to RGB for the model
|
92 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
@@ -100,56 +101,57 @@ def process_video(video_path):
|
|
100 |
# Write the frame
|
101 |
out.write(frame)
|
102 |
|
103 |
-
#
|
104 |
-
progress
|
105 |
-
print(f"Processing: {progress:.1f}% complete", end='\r')
|
106 |
|
107 |
# Release everything
|
108 |
cap.release()
|
109 |
out.release()
|
110 |
|
|
|
|
|
|
|
|
|
111 |
return output_path
|
112 |
|
113 |
except Exception as e:
|
114 |
print(f"Error processing video: {str(e)}")
|
115 |
-
|
116 |
|
117 |
def detect_objects_in_video(video):
|
118 |
"""
|
119 |
Gradio interface function for video object detection
|
120 |
"""
|
121 |
if video is None:
|
122 |
-
|
123 |
|
124 |
try:
|
125 |
# Process the video
|
126 |
output_path = process_video(video)
|
127 |
-
if output_path is None:
|
128 |
-
return None
|
129 |
-
|
130 |
return output_path
|
131 |
|
132 |
except Exception as e:
|
133 |
-
|
134 |
-
return None
|
135 |
|
136 |
# Create the Gradio interface
|
137 |
demo = gr.Interface(
|
138 |
fn=detect_objects_in_video,
|
139 |
inputs=[
|
140 |
-
gr.Video(label="Upload Video")
|
141 |
],
|
142 |
outputs=[
|
143 |
-
gr.Video(label="Processed Video")
|
144 |
],
|
145 |
-
title="Video Object Detection",
|
146 |
description="""
|
147 |
Upload a video to detect and track objects within it.
|
148 |
The application will process the video and draw bounding boxes around detected objects
|
149 |
with their labels and confidence scores.
|
150 |
Note: Processing may take some time depending on the video length.
|
151 |
-
"""
|
|
|
|
|
152 |
)
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
-
demo.launch()
|
|
|
49 |
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
50 |
return frame_with_boxes
|
51 |
|
52 |
+
def process_video(video_path, progress=gr.Progress()):
|
53 |
"""
|
54 |
Process the video file and return the path to the processed video
|
55 |
"""
|
|
|
57 |
# Open the video file
|
58 |
cap = cv2.VideoCapture(video_path)
|
59 |
if not cap.isOpened():
|
60 |
+
raise ValueError("Could not open video file")
|
61 |
|
62 |
# Get video properties
|
63 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
64 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
65 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
66 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# Create output video file
|
69 |
+
output_path = os.path.join(tempfile.gettempdir(), 'output_video.mp4')
|
70 |
+
|
71 |
+
# Initialize video writer with H264 codec
|
72 |
+
fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
73 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
74 |
|
75 |
+
if not out.isOpened():
|
76 |
+
raise ValueError("Could not create output video file")
|
77 |
+
|
78 |
frame_count = 0
|
79 |
+
process_every_n_frames = 1 # Process every frame
|
80 |
|
81 |
+
progress(0, desc="Processing video...")
|
|
|
82 |
|
83 |
+
while True:
|
84 |
ret, frame = cap.read()
|
85 |
if not ret:
|
86 |
break
|
87 |
|
88 |
frame_count += 1
|
89 |
|
90 |
+
# Process frame
|
91 |
if frame_count % process_every_n_frames == 0:
|
92 |
# Convert frame to RGB for the model
|
93 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
101 |
# Write the frame
|
102 |
out.write(frame)
|
103 |
|
104 |
+
# Update progress
|
105 |
+
progress((frame_count / total_frames), desc=f"Processing frame {frame_count}/{total_frames}")
|
|
|
106 |
|
107 |
# Release everything
|
108 |
cap.release()
|
109 |
out.release()
|
110 |
|
111 |
+
# Verify the output file exists and has size
|
112 |
+
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
|
113 |
+
raise ValueError("Output video file is empty or was not created")
|
114 |
+
|
115 |
return output_path
|
116 |
|
117 |
except Exception as e:
|
118 |
print(f"Error processing video: {str(e)}")
|
119 |
+
raise gr.Error(f"Error processing video: {str(e)}")
|
120 |
|
121 |
def detect_objects_in_video(video):
|
122 |
"""
|
123 |
Gradio interface function for video object detection
|
124 |
"""
|
125 |
if video is None:
|
126 |
+
raise gr.Error("Please upload a video file")
|
127 |
|
128 |
try:
|
129 |
# Process the video
|
130 |
output_path = process_video(video)
|
|
|
|
|
|
|
131 |
return output_path
|
132 |
|
133 |
except Exception as e:
|
134 |
+
raise gr.Error(f"Error during video processing: {str(e)}")
|
|
|
135 |
|
136 |
# Create the Gradio interface
|
137 |
demo = gr.Interface(
|
138 |
fn=detect_objects_in_video,
|
139 |
inputs=[
|
140 |
+
gr.Video(label="Upload Video", format="mp4")
|
141 |
],
|
142 |
outputs=[
|
143 |
+
gr.Video(label="Processed Video", format="mp4")
|
144 |
],
|
145 |
+
title="@GenAILearniverse Project: Video Object Detection",
|
146 |
description="""
|
147 |
Upload a video to detect and track objects within it.
|
148 |
The application will process the video and draw bounding boxes around detected objects
|
149 |
with their labels and confidence scores.
|
150 |
Note: Processing may take some time depending on the video length.
|
151 |
+
""",
|
152 |
+
examples=[],
|
153 |
+
cache_examples=False
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
demo.launch()
|