silviasapora's picture
Model save
9dc97f6 verified
|
raw
history blame
2.83 kB
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: gemma-7b-orpo-low-quality
    results: []

gemma-7b-orpo-low-quality

This model is a fine-tuned version of google/gemma-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5398
  • Rewards/chosen: -0.0540
  • Rewards/rejected: -0.0625
  • Rewards/accuracies: 0.5396
  • Rewards/margins: 0.0085
  • Logps/rejected: -1.2503
  • Logps/chosen: -1.0803
  • Logits/rejected: 271.8756
  • Logits/chosen: 300.6891
  • Nll Loss: 1.4724
  • Log Odds Ratio: -0.6945
  • Log Odds Chosen: 0.2937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.441 0.9955 167 1.4762 -0.0510 -0.0574 0.5324 0.0064 -1.1485 -1.0204 290.1581 318.9965 1.4310 -0.6990 0.1934
1.0908 1.9970 335 1.4250 -0.0497 -0.0576 0.5324 0.0079 -1.1528 -0.9950 285.8206 314.6779 1.3697 -0.6970 0.2360
0.5724 2.9866 501 1.5398 -0.0540 -0.0625 0.5396 0.0085 -1.2503 -1.0803 271.8756 300.6891 1.4724 -0.6945 0.2937

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1