--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - trl - orpo - generated_from_trainer model-index: - name: gemma-7b-orpo-low-quality results: [] --- # gemma-7b-orpo-low-quality This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5398 - Rewards/chosen: -0.0540 - Rewards/rejected: -0.0625 - Rewards/accuracies: 0.5396 - Rewards/margins: 0.0085 - Logps/rejected: -1.2503 - Logps/chosen: -1.0803 - Logits/rejected: 271.8756 - Logits/chosen: 300.6891 - Nll Loss: 1.4724 - Log Odds Ratio: -0.6945 - Log Odds Chosen: 0.2937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.441 | 0.9955 | 167 | 1.4762 | -0.0510 | -0.0574 | 0.5324 | 0.0064 | -1.1485 | -1.0204 | 290.1581 | 318.9965 | 1.4310 | -0.6990 | 0.1934 | | 1.0908 | 1.9970 | 335 | 1.4250 | -0.0497 | -0.0576 | 0.5324 | 0.0079 | -1.1528 | -0.9950 | 285.8206 | 314.6779 | 1.3697 | -0.6970 | 0.2360 | | 0.5724 | 2.9866 | 501 | 1.5398 | -0.0540 | -0.0625 | 0.5396 | 0.0085 | -1.2503 | -1.0803 | 271.8756 | 300.6891 | 1.4724 | -0.6945 | 0.2937 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1