SILMA STS Arabic Embedding Model 0.1
This is a sentence-transformers model finetuned from silma-ai/silma-embeddding-matryoshka-0.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: aubmindlab/bert-base-arabertv02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then load the model
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
Samples
[+] Short Sentence Similarity
Arabic
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
English
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
[+] Long Sentence Similarity
Arabic
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
English
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
[+] Question to Paragraph Matching
Arabic
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
English
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
[+] Message to Intent-Name Mapping
Arabic
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
English
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======
Evaluation
Metrics
Semantic Similarity
- Dataset:
MTEB STS17 (ar-ar)
source - Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8515 |
spearman_cosine | 0.8559 |
pearson_manhattan | 0.8220 |
spearman_manhattan | 0.8397 |
pearson_euclidean | 0.8231 |
spearman_euclidean | 0.8444 |
pearson_dot | 0.8515 |
spearman_dot | 0.8557 |
Training Details
This model was fine-tuned via 2 phases:
Phase 1:
In phase 1
, we curated a dataset silma-ai/silma-arabic-triplets-dataset-v1.0 which
contains more than 2.25M
records of (anchor, positive and negative) Arabic/English samples.
Only the first 600
samples were taken to be the eval
dataset, while the rest were used for fine-tuning.
Phase 1
produces a finetuned Matryoshka
model based on aubmindlab/bert-base-arabertv02 with the following hyperparameters:
per_device_train_batch_size
: 250per_device_eval_batch_size
: 10learning_rate
: 1e-05num_train_epochs
: 3bf16
: Truedataloader_drop_last
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
Phase 2:
In phase 2
, we curated a dataset silma-ai/silma-arabic-english-sts-dataset-v1.0 which
contains more than 30k
records of (sentence1, sentence2 and similarity-score) Arabic/English samples.
Only the first 100
samples were taken to be the eval
dataset, while the rest was used for fine-tuning.
Phase 2
produces a finetuned STS
model based on the model from phase 1
, with the following hyperparameters:
eval_strategy
: stepsper_device_train_batch_size
: 250per_device_eval_batch_size
: 10learning_rate
: 1e-06num_train_epochs
: 10bf16
: Truedataloader_drop_last
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation:
BibTeX:
@misc{silma2024embedding,
author = {Abu Bakr Soliman, Karim Ouda, SILMA AI},
title = {SILMA Embedding STS 0.1},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co./silma-ai/silma-embeddding-sts-0.1}},
}
APA:
Abu Bakr Soliman, Karim Ouda, SILMA AI. (2024). SILMA Embedding STS 0.1 [Model]. Hugging Face. https://huggingface.co./silma-ai/silma-embeddding-sts-0.1
- Downloads last month
- 1,428
Model tree for silma-ai/silma-embeddding-sts-v0.1
Base model
aubmindlab/bert-base-arabertv02Collection including silma-ai/silma-embeddding-sts-v0.1
Evaluation results
- accuracy on MTEB MassiveIntentClassification (ar)test set self-reported56.490
- f1 on MTEB MassiveIntentClassification (ar)test set self-reported54.053
- f1_weighted on MTEB MassiveIntentClassification (ar)test set self-reported56.742
- main_score on MTEB MassiveIntentClassification (ar)test set self-reported56.490
- accuracy on MTEB MassiveIntentClassification (en)test set self-reported48.783
- f1 on MTEB MassiveIntentClassification (en)test set self-reported47.560
- f1_weighted on MTEB MassiveIntentClassification (en)test set self-reported48.980
- main_score on MTEB MassiveIntentClassification (en)test set self-reported48.783
- accuracy on MTEB MassiveIntentClassification (ar)validation set self-reported56.768
- f1 on MTEB MassiveIntentClassification (ar)validation set self-reported53.964