|
--- |
|
library_name: transformers.js |
|
--- |
|
|
|
https://huggingface.co./google/siglip-large-patch16-384 with ONNX weights to be compatible with Transformers.js. |
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Zero-shot image classification w/ `Xenova/siglip-large-patch16-384`: |
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const classifier = await pipeline('zero-shot-image-classification', 'Xenova/siglip-large-patch16-384'); |
|
const url = 'http://images.cocodataset.org/val2017/000000039769.jpg'; |
|
const output = await classifier(url, ['2 cats', '2 dogs'], { |
|
hypothesis_template: 'a photo of {}', |
|
}); |
|
console.log(output); |
|
// [ |
|
// { score: 0.4783420264720917, label: '2 cats' }, |
|
// { score: 0.00022271279885899276, label: '2 dogs' } |
|
// ] |
|
``` |
|
|
|
**Example:** Compute text embeddings with `SiglipTextModel`. |
|
|
|
```javascript |
|
import { AutoTokenizer, SiglipTextModel } from '@xenova/transformers'; |
|
|
|
// Load tokenizer and text model |
|
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/siglip-large-patch16-384'); |
|
const text_model = await SiglipTextModel.from_pretrained('Xenova/siglip-large-patch16-384'); |
|
|
|
// Run tokenization |
|
const texts = ['a photo of 2 cats', 'a photo of 2 dogs']; |
|
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true }); |
|
|
|
// Compute embeddings |
|
const { pooler_output } = await text_model(text_inputs); |
|
// Tensor { |
|
// dims: [ 2, 768 ], |
|
// type: 'float32', |
|
// data: Float32Array(1536) [ ... ], |
|
// size: 1536 |
|
// } |
|
``` |
|
|
|
**Example:** Compute vision embeddings with `SiglipVisionModel`. |
|
|
|
```javascript |
|
import { AutoProcessor, SiglipVisionModel, RawImage} from '@xenova/transformers'; |
|
|
|
// Load processor and vision model |
|
const processor = await AutoProcessor.from_pretrained('Xenova/siglip-large-patch16-384'); |
|
const vision_model = await SiglipVisionModel.from_pretrained('Xenova/siglip-large-patch16-384'); |
|
|
|
// Read image and run processor |
|
const image = await RawImage.read('https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'); |
|
const image_inputs = await processor(image); |
|
|
|
// Compute embeddings |
|
const { pooler_output } = await vision_model(image_inputs); |
|
// Tensor { |
|
// dims: [ 1, 768 ], |
|
// type: 'float32', |
|
// data: Float32Array(768) [ ... ], |
|
// size: 768 |
|
// } |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co./docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |