Update README.md
Browse files
README.md
CHANGED
@@ -3,5 +3,75 @@ library_name: transformers.js
|
|
3 |
---
|
4 |
|
5 |
https://huggingface.co/google/siglip-large-patch16-384 with ONNX weights to be compatible with Transformers.js.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
3 |
---
|
4 |
|
5 |
https://huggingface.co/google/siglip-large-patch16-384 with ONNX weights to be compatible with Transformers.js.
|
6 |
+
## Usage (Transformers.js)
|
7 |
+
|
8 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
9 |
+
```bash
|
10 |
+
npm i @xenova/transformers
|
11 |
+
```
|
12 |
+
|
13 |
+
**Example:** Zero-shot image classification w/ `Xenova/siglip-large-patch16-384`:
|
14 |
+
```js
|
15 |
+
import { pipeline } from '@xenova/transformers';
|
16 |
+
|
17 |
+
const classifier = await pipeline('zero-shot-image-classification', 'Xenova/siglip-large-patch16-384');
|
18 |
+
const url = 'http://images.cocodataset.org/val2017/000000039769.jpg';
|
19 |
+
const output = await classifier(url, ['2 cats', '2 dogs'], {
|
20 |
+
hypothesis_template: 'a photo of {}',
|
21 |
+
});
|
22 |
+
console.log(output);
|
23 |
+
// [
|
24 |
+
// { score: 0.4783420264720917, label: '2 cats' },
|
25 |
+
// { score: 0.00022271279885899276, label: '2 dogs' }
|
26 |
+
// ]
|
27 |
+
```
|
28 |
+
|
29 |
+
**Example:** Compute text embeddings with `SiglipTextModel`.
|
30 |
+
|
31 |
+
```javascript
|
32 |
+
import { AutoTokenizer, SiglipTextModel } from '@xenova/transformers';
|
33 |
+
|
34 |
+
// Load tokenizer and text model
|
35 |
+
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/siglip-large-patch16-384');
|
36 |
+
const text_model = await SiglipTextModel.from_pretrained('Xenova/siglip-large-patch16-384');
|
37 |
+
|
38 |
+
// Run tokenization
|
39 |
+
const texts = ['a photo of 2 cats', 'a photo of 2 dogs'];
|
40 |
+
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
|
41 |
+
|
42 |
+
// Compute embeddings
|
43 |
+
const { pooler_output } = await text_model(text_inputs);
|
44 |
+
// Tensor {
|
45 |
+
// dims: [ 2, 768 ],
|
46 |
+
// type: 'float32',
|
47 |
+
// data: Float32Array(1536) [ ... ],
|
48 |
+
// size: 1536
|
49 |
+
// }
|
50 |
+
```
|
51 |
+
|
52 |
+
**Example:** Compute vision embeddings with `SiglipVisionModel`.
|
53 |
+
|
54 |
+
```javascript
|
55 |
+
import { AutoProcessor, SiglipVisionModel, RawImage} from '@xenova/transformers';
|
56 |
+
|
57 |
+
// Load processor and vision model
|
58 |
+
const processor = await AutoProcessor.from_pretrained('Xenova/siglip-large-patch16-384');
|
59 |
+
const vision_model = await SiglipVisionModel.from_pretrained('Xenova/siglip-large-patch16-384');
|
60 |
+
|
61 |
+
// Read image and run processor
|
62 |
+
const image = await RawImage.read('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg');
|
63 |
+
const image_inputs = await processor(image);
|
64 |
+
|
65 |
+
// Compute embeddings
|
66 |
+
const { pooler_output } = await vision_model(image_inputs);
|
67 |
+
// Tensor {
|
68 |
+
// dims: [ 1, 768 ],
|
69 |
+
// type: 'float32',
|
70 |
+
// data: Float32Array(768) [ ... ],
|
71 |
+
// size: 768
|
72 |
+
// }
|
73 |
+
```
|
74 |
+
|
75 |
+
---
|
76 |
|
77 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|