|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- recall |
|
model-index: |
|
- name: vca |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Recall |
|
type: recall |
|
value: 0.7866666666666666 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vca |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2021 |
|
- Recall: 0.7867 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 9 | 0.4676 | 0.0 | |
|
| No log | 2.0 | 18 | 0.2918 | 0.0 | |
|
| No log | 3.0 | 27 | 0.2191 | 0.0 | |
|
| No log | 4.0 | 36 | 0.1971 | 0.1733 | |
|
| No log | 5.0 | 45 | 0.1695 | 0.4133 | |
|
| No log | 6.0 | 54 | 0.1693 | 0.52 | |
|
| No log | 7.0 | 63 | 0.1597 | 0.5867 | |
|
| No log | 8.0 | 72 | 0.1863 | 0.7733 | |
|
| No log | 9.0 | 81 | 0.1591 | 0.72 | |
|
| No log | 10.0 | 90 | 0.1543 | 0.72 | |
|
| No log | 11.0 | 99 | 0.1559 | 0.6933 | |
|
| No log | 12.0 | 108 | 0.1658 | 0.7333 | |
|
| No log | 13.0 | 117 | 0.1691 | 0.6533 | |
|
| No log | 14.0 | 126 | 0.1779 | 0.68 | |
|
| No log | 15.0 | 135 | 0.1635 | 0.8133 | |
|
| No log | 16.0 | 144 | 0.1765 | 0.6933 | |
|
| No log | 17.0 | 153 | 0.1679 | 0.7333 | |
|
| No log | 18.0 | 162 | 0.1694 | 0.7467 | |
|
| No log | 19.0 | 171 | 0.1770 | 0.8133 | |
|
| No log | 20.0 | 180 | 0.1692 | 0.7867 | |
|
| No log | 21.0 | 189 | 0.2021 | 0.7867 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|