vca / README.md
sck's picture
update model card README.md
2a3eab8
|
raw
history blame
2.95 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - recall
model-index:
  - name: vca
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Recall
            type: recall
            value: 0.7866666666666666

vca

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2021
  • Recall: 0.7867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Recall
No log 1.0 9 0.4676 0.0
No log 2.0 18 0.2918 0.0
No log 3.0 27 0.2191 0.0
No log 4.0 36 0.1971 0.1733
No log 5.0 45 0.1695 0.4133
No log 6.0 54 0.1693 0.52
No log 7.0 63 0.1597 0.5867
No log 8.0 72 0.1863 0.7733
No log 9.0 81 0.1591 0.72
No log 10.0 90 0.1543 0.72
No log 11.0 99 0.1559 0.6933
No log 12.0 108 0.1658 0.7333
No log 13.0 117 0.1691 0.6533
No log 14.0 126 0.1779 0.68
No log 15.0 135 0.1635 0.8133
No log 16.0 144 0.1765 0.6933
No log 17.0 153 0.1679 0.7333
No log 18.0 162 0.1694 0.7467
No log 19.0 171 0.1770 0.8133
No log 20.0 180 0.1692 0.7867
No log 21.0 189 0.2021 0.7867

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3