metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- recall
model-index:
- name: vca
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Recall
type: recall
value: 0.7866666666666666
vca
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2021
- Recall: 0.7867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Recall |
---|---|---|---|---|
No log | 1.0 | 9 | 0.4676 | 0.0 |
No log | 2.0 | 18 | 0.2918 | 0.0 |
No log | 3.0 | 27 | 0.2191 | 0.0 |
No log | 4.0 | 36 | 0.1971 | 0.1733 |
No log | 5.0 | 45 | 0.1695 | 0.4133 |
No log | 6.0 | 54 | 0.1693 | 0.52 |
No log | 7.0 | 63 | 0.1597 | 0.5867 |
No log | 8.0 | 72 | 0.1863 | 0.7733 |
No log | 9.0 | 81 | 0.1591 | 0.72 |
No log | 10.0 | 90 | 0.1543 | 0.72 |
No log | 11.0 | 99 | 0.1559 | 0.6933 |
No log | 12.0 | 108 | 0.1658 | 0.7333 |
No log | 13.0 | 117 | 0.1691 | 0.6533 |
No log | 14.0 | 126 | 0.1779 | 0.68 |
No log | 15.0 | 135 | 0.1635 | 0.8133 |
No log | 16.0 | 144 | 0.1765 | 0.6933 |
No log | 17.0 | 153 | 0.1679 | 0.7333 |
No log | 18.0 | 162 | 0.1694 | 0.7467 |
No log | 19.0 | 171 | 0.1770 | 0.8133 |
No log | 20.0 | 180 | 0.1692 | 0.7867 |
No log | 21.0 | 189 | 0.2021 | 0.7867 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3