|
--- |
|
license: mit |
|
base_model: nlptown/bert-base-multilingual-uncased-sentiment |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- amazon_reviews_multi |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: amazon_reviews_finetuning-sentiment-model-3000-samples |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: amazon_reviews_multi |
|
type: amazon_reviews_multi |
|
config: en |
|
split: validation |
|
args: en |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.58 |
|
- name: F1 |
|
type: f1 |
|
value: 0.5603711644808317 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# amazon_reviews_finetuning-sentiment-model-3000-samples |
|
|
|
This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co./nlptown/bert-base-multilingual-uncased-sentiment) on the amazon_reviews_multi dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0099 |
|
- Accuracy: 0.58 |
|
- F1: 0.5604 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.0 | 188 | 0.9821 | 0.59 | 0.5534 | |
|
| No log | 2.0 | 376 | 1.0099 | 0.58 | 0.5604 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|