--- license: mit base_model: nlptown/bert-base-multilingual-uncased-sentiment tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 model-index: - name: amazon_reviews_finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: en split: validation args: en metrics: - name: Accuracy type: accuracy value: 0.58 - name: F1 type: f1 value: 0.5603711644808317 --- # amazon_reviews_finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co./nlptown/bert-base-multilingual-uncased-sentiment) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0099 - Accuracy: 0.58 - F1: 0.5604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 188 | 0.9821 | 0.59 | 0.5534 | | No log | 2.0 | 376 | 1.0099 | 0.58 | 0.5604 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3