results / README.md
sanjithrj's picture
End of training
503c919 verified
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6303
  • Rouge1: 0.2243
  • Rouge2: 0.0638
  • Rougel: 0.1869
  • Rougelsum: 0.1873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 3 2.8417 0.2288 0.0874 0.2003 0.2016
No log 2.0 6 2.7634 0.2271 0.0883 0.1977 0.1967
No log 3.0 9 2.6403 0.2144 0.0640 0.1852 0.1853
No log 4.0 12 2.5802 0.2360 0.0760 0.2042 0.2060
No log 5.0 15 2.5559 0.2321 0.0801 0.2019 0.2022
No log 6.0 18 2.5504 0.2312 0.0793 0.2006 0.2028
No log 7.0 21 2.5511 0.2338 0.0809 0.2032 0.2055
No log 8.0 24 2.5562 0.2370 0.0813 0.2063 0.2078
No log 9.0 27 2.5584 0.2370 0.0813 0.2063 0.2078
No log 10.0 30 2.5568 0.2370 0.0813 0.2063 0.2078
No log 11.0 33 2.5600 0.2370 0.0813 0.2063 0.2078
No log 12.0 36 2.5662 0.2373 0.0804 0.1926 0.1910
No log 13.0 39 2.5772 0.2430 0.0809 0.1991 0.1996
No log 14.0 42 2.5900 0.2442 0.0813 0.1999 0.2005
No log 15.0 45 2.5993 0.2436 0.0810 0.1988 0.1995
No log 16.0 48 2.6078 0.2547 0.0810 0.2113 0.2128
No log 17.0 51 2.6174 0.2391 0.0657 0.2035 0.2027
No log 18.0 54 2.6243 0.2243 0.0638 0.1869 0.1873
No log 19.0 57 2.6285 0.2243 0.0638 0.1869 0.1873
No log 20.0 60 2.6303 0.2243 0.0638 0.1869 0.1873

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2