Edit model card

results

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6303
  • Rouge1: 0.2243
  • Rouge2: 0.0638
  • Rougel: 0.1869
  • Rougelsum: 0.1873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 3 2.8417 0.2288 0.0874 0.2003 0.2016
No log 2.0 6 2.7634 0.2271 0.0883 0.1977 0.1967
No log 3.0 9 2.6403 0.2144 0.0640 0.1852 0.1853
No log 4.0 12 2.5802 0.2360 0.0760 0.2042 0.2060
No log 5.0 15 2.5559 0.2321 0.0801 0.2019 0.2022
No log 6.0 18 2.5504 0.2312 0.0793 0.2006 0.2028
No log 7.0 21 2.5511 0.2338 0.0809 0.2032 0.2055
No log 8.0 24 2.5562 0.2370 0.0813 0.2063 0.2078
No log 9.0 27 2.5584 0.2370 0.0813 0.2063 0.2078
No log 10.0 30 2.5568 0.2370 0.0813 0.2063 0.2078
No log 11.0 33 2.5600 0.2370 0.0813 0.2063 0.2078
No log 12.0 36 2.5662 0.2373 0.0804 0.1926 0.1910
No log 13.0 39 2.5772 0.2430 0.0809 0.1991 0.1996
No log 14.0 42 2.5900 0.2442 0.0813 0.1999 0.2005
No log 15.0 45 2.5993 0.2436 0.0810 0.1988 0.1995
No log 16.0 48 2.6078 0.2547 0.0810 0.2113 0.2128
No log 17.0 51 2.6174 0.2391 0.0657 0.2035 0.2027
No log 18.0 54 2.6243 0.2243 0.0638 0.1869 0.1873
No log 19.0 57 2.6285 0.2243 0.0638 0.1869 0.1873
No log 20.0 60 2.6303 0.2243 0.0638 0.1869 0.1873

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sanjithrj/results

Finetuned
(636)
this model