samuellimabraz's picture
End of training
d7f4ba3 verified
metadata
base_model: google-t5/t5-small
datasets:
  - Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
  - rouge
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: t5-small-QLoRA-TweetSumm-1724713795
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: Andyrasika/TweetSumm-tuned
          type: Andyrasika/TweetSumm-tuned
        metrics:
          - type: rouge
            value: 0.4298
            name: Rouge1
          - type: f1
            value: 0.887
            name: F1
          - type: precision
            value: 0.8838
            name: Precision
          - type: recall
            value: 0.8904
            name: Recall

t5-small-QLoRA-TweetSumm-1724713795

This model is a fine-tuned version of google-t5/t5-small on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0940
  • Rouge1: 0.4298
  • Rouge2: 0.1915
  • Rougel: 0.3559
  • Rougelsum: 0.3956
  • Gen Len: 47.8091
  • F1: 0.887
  • Precision: 0.8838
  • Recall: 0.8904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.3641 1.0 110 2.2019 0.4172 0.1774 0.3518 0.386 47.7636 0.8828 0.8806 0.8852
2.2228 2.0 220 2.1040 0.419 0.1789 0.3477 0.3827 48.1182 0.8846 0.882 0.8875
2.0174 3.0 330 2.0940 0.4298 0.1915 0.3559 0.3956 47.8091 0.887 0.8838 0.8904

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1