--- base_model: google-t5/t5-small datasets: - Andyrasika/TweetSumm-tuned library_name: peft license: apache-2.0 metrics: - rouge - f1 - precision - recall tags: - generated_from_trainer model-index: - name: t5-small-QLoRA-TweetSumm-1724713795 results: - task: type: summarization name: Summarization dataset: name: Andyrasika/TweetSumm-tuned type: Andyrasika/TweetSumm-tuned metrics: - type: rouge value: 0.4298 name: Rouge1 - type: f1 value: 0.887 name: F1 - type: precision value: 0.8838 name: Precision - type: recall value: 0.8904 name: Recall --- # t5-small-QLoRA-TweetSumm-1724713795 This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co./google-t5/t5-small) on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set: - Loss: 2.0940 - Rouge1: 0.4298 - Rouge2: 0.1915 - Rougel: 0.3559 - Rougelsum: 0.3956 - Gen Len: 47.8091 - F1: 0.887 - Precision: 0.8838 - Recall: 0.8904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| | 2.3641 | 1.0 | 110 | 2.2019 | 0.4172 | 0.1774 | 0.3518 | 0.386 | 47.7636 | 0.8828 | 0.8806 | 0.8852 | | 2.2228 | 2.0 | 220 | 2.1040 | 0.419 | 0.1789 | 0.3477 | 0.3827 | 48.1182 | 0.8846 | 0.882 | 0.8875 | | 2.0174 | 3.0 | 330 | 2.0940 | 0.4298 | 0.1915 | 0.3559 | 0.3956 | 47.8091 | 0.887 | 0.8838 | 0.8904 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1