|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- chatml |
|
- mistral |
|
- instruct |
|
- openhermes |
|
- economics |
|
datasets: |
|
- rxavier/economicus |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
model-index: |
|
- name: Taurus-7B-1.0 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 63.57 |
|
name: normalized accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 83.64 |
|
name: normalized accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 63.5 |
|
name: accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 50.21 |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 78.14 |
|
name: accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 59.36 |
|
name: accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0 |
|
name: Open LLM Leaderboard |
|
library_name: transformers |
|
--- |
|
|
|
# Taurus 7B 1.0 |
|
|
|
![image/png](https://i.ibb.co/dGZ50jy/00003-4001299986.png) |
|
|
|
## Description |
|
|
|
Taurus is an [OpenHermes 2.5](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B) finetune using the [Economicus dataset](https://huggingface.co./datasets/rxavier/economicus), an instruct dataset synthetically generated from Economics PhD textbooks. |
|
|
|
The model was trained for 2 epochs (QLoRA) using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). The exact config I used can be found [here](https://huggingface.co./rxavier/Taurus-1.0-Mistral-7B/tree/main/axolotl). |
|
|
|
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_rxavier__Taurus-7B-1.0) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |66.40| |
|
|AI2 Reasoning Challenge (25-Shot)|63.57| |
|
|HellaSwag (10-Shot) |83.64| |
|
|MMLU (5-Shot) |63.50| |
|
|TruthfulQA (0-shot) |50.21| |
|
|Winogrande (5-shot) |78.14| |
|
|GSM8k (5-shot) |59.36| |
|
|
|
## Prompt format |
|
|
|
Taurus uses **ChatML**. |
|
|
|
``` |
|
<|im_start|>system |
|
System message |
|
<|im_start|>user |
|
User message<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
|
|
model_id = "rxavier/Taurus-7B-1.0" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, #torch.float16 for older GPUs |
|
device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
generation_config = GenerationConfig( |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed." |
|
prompt = "Give me latex formulas for extended euler equations" |
|
|
|
messages = [{"role": "system", |
|
"content": system_message}, |
|
{"role": "user", |
|
"content": prompt}] |
|
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512) |
|
print(tokenizer.decode(outputs.cpu().tolist()[0])) |
|
``` |
|
|
|
## GGUF quants |
|
|
|
You can find GGUF quants for llama.cpp [here](https://huggingface.co./rxavier/Taurus-7B-1.0-GGUF). |