metadata
language:
- en
license: mit
tags:
- chatml
- mistral
- instruct
- openhermes
- economics
datasets:
- rxavier/economicus
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: Taurus-7B-1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.57
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.64
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.5
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 50.21
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.14
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.36
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rxavier/Taurus-7B-1.0
name: Open LLM Leaderboard
library_name: transformers
Taurus 7B 1.0
Description
Taurus is an OpenHermes 2.5 finetune using the Economicus dataset, an instruct dataset synthetically generated from Economics PhD textbooks.
The model was trained for 2 epochs (QLoRA) using axolotl. The exact config I used can be found here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 66.40 |
AI2 Reasoning Challenge (25-Shot) | 63.57 |
HellaSwag (10-Shot) | 83.64 |
MMLU (5-Shot) | 63.50 |
TruthfulQA (0-shot) | 50.21 |
Winogrande (5-shot) | 78.14 |
GSM8k (5-shot) | 59.36 |
Prompt format
Taurus uses ChatML.
<|im_start|>system
System message
<|im_start|>user
User message<|im_end|>
<|im_start|>assistant
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_id = "rxavier/Taurus-7B-1.0"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, #torch.float16 for older GPUs
device_map="auto", # Requires having accelerate installed, useful in places like Colab with limited VRAM
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_config = GenerationConfig(
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
system_message = "You are an expert in economics with PhD level knowledge. You are helpful, give thorough and clear explanations, and use equations and formulas where needed."
prompt = "Give me latex formulas for extended euler equations"
messages = [{"role": "system",
"content": system_message},
{"role": "user",
"content": prompt}]
tokens = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(inputs=tokens, generation_config=generation_config, max_length=512)
print(tokenizer.decode(outputs.cpu().tolist()[0]))
GGUF quants
You can find GGUF quants for llama.cpp here.