bert2 / README.md
rubakha's picture
Training in progress epoch 2
8f3c342
---
license: apache-2.0
base_model: Vasanth/bert-base-uncased-finetuned-emotion
tags:
- generated_from_keras_callback
model-index:
- name: rubakha/bert2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# rubakha/bert2
This model is a fine-tuned version of [Vasanth/bert-base-uncased-finetuned-emotion](https://huggingface.co./Vasanth/bert-base-uncased-finetuned-emotion) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1018
- Train Accuracy: 0.945
- Validation Loss: 0.1530
- Validation Accuracy: 0.9450
- Train Precision: 0.9466
- Train Recall: 0.945
- Train F1: 0.9446
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.2174 | 0.941 | 0.1580 | 0.9410 | 0.9423 | 0.941 | 0.9406 | 0 |
| 0.1314 | 0.9435 | 0.1506 | 0.9435 | 0.9463 | 0.9435 | 0.9428 | 1 |
| 0.1018 | 0.945 | 0.1530 | 0.9450 | 0.9466 | 0.945 | 0.9446 | 2 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2