bert2 / README.md
rubakha's picture
Training in progress epoch 2
8f3c342
metadata
license: apache-2.0
base_model: Vasanth/bert-base-uncased-finetuned-emotion
tags:
  - generated_from_keras_callback
model-index:
  - name: rubakha/bert2
    results: []

rubakha/bert2

This model is a fine-tuned version of Vasanth/bert-base-uncased-finetuned-emotion on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1018
  • Train Accuracy: 0.945
  • Validation Loss: 0.1530
  • Validation Accuracy: 0.9450
  • Train Precision: 0.9466
  • Train Recall: 0.945
  • Train F1: 0.9446
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Train Precision Train Recall Train F1 Epoch
0.2174 0.941 0.1580 0.9410 0.9423 0.941 0.9406 0
0.1314 0.9435 0.1506 0.9435 0.9463 0.9435 0.9428 1
0.1018 0.945 0.1530 0.9450 0.9466 0.945 0.9446 2

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2