|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 42.6378 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-samsum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6629 |
|
- Rouge1: 42.6378 |
|
- Rouge2: 18.2896 |
|
- Rougel: 35.1851 |
|
- Rougelsum: 38.8113 |
|
- Gen Len: 16.8596 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 40 |
|
- eval_batch_size: 40 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.7932 | 0.27 | 100 | 1.6830 | 42.7032 | 18.4803 | 35.278 | 38.9331 | 17.0403 | |
|
| 1.8102 | 0.54 | 200 | 1.6701 | 42.2811 | 18.2246 | 35.0893 | 38.4619 | 16.7265 | |
|
| 1.8279 | 0.81 | 300 | 1.6658 | 42.6465 | 18.6939 | 35.4208 | 38.9399 | 16.8120 | |
|
| 1.802 | 1.08 | 400 | 1.6633 | 42.5867 | 18.3579 | 35.3253 | 38.7049 | 16.6862 | |
|
| 1.773 | 1.36 | 500 | 1.6629 | 42.6378 | 18.2896 | 35.1851 | 38.8113 | 16.8596 | |
|
| 1.7752 | 1.63 | 600 | 1.6598 | 42.7111 | 18.3689 | 35.4218 | 38.8698 | 16.9328 | |
|
| 1.7688 | 1.9 | 700 | 1.6589 | 42.6972 | 18.3536 | 35.3153 | 38.7976 | 17.0073 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|