--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-small-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 42.6378 --- # flan-t5-small-samsum This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6629 - Rouge1: 42.6378 - Rouge2: 18.2896 - Rougel: 35.1851 - Rougelsum: 38.8113 - Gen Len: 16.8596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.7932 | 0.27 | 100 | 1.6830 | 42.7032 | 18.4803 | 35.278 | 38.9331 | 17.0403 | | 1.8102 | 0.54 | 200 | 1.6701 | 42.2811 | 18.2246 | 35.0893 | 38.4619 | 16.7265 | | 1.8279 | 0.81 | 300 | 1.6658 | 42.6465 | 18.6939 | 35.4208 | 38.9399 | 16.8120 | | 1.802 | 1.08 | 400 | 1.6633 | 42.5867 | 18.3579 | 35.3253 | 38.7049 | 16.6862 | | 1.773 | 1.36 | 500 | 1.6629 | 42.6378 | 18.2896 | 35.1851 | 38.8113 | 16.8596 | | 1.7752 | 1.63 | 600 | 1.6598 | 42.7111 | 18.3689 | 35.4218 | 38.8698 | 16.9328 | | 1.7688 | 1.9 | 700 | 1.6589 | 42.6972 | 18.3536 | 35.3153 | 38.7976 | 17.0073 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0