rishavranaut's picture
rishavranaut/Qwen2_7B_Task2_semantic_pred
48e7df2 verified
metadata
base_model: Qwen/Qwen2-7B
library_name: peft
license: apache-2.0
metrics:
  - accuracy
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: Qwen2_7B_Task2_semantic_pred
    results: []

Qwen2_7B_Task2_semantic_pred

This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5963
  • Accuracy: 0.8123
  • Precision: 0.8123
  • Recall: 0.8123
  • F1 score: 0.8123

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
0.6405 0.5208 200 0.5790 0.7666 0.7666 0.7666 0.7666
0.4689 1.0417 400 0.9852 0.6649 0.6649 0.6649 0.6649
0.3635 1.5625 600 0.4249 0.8188 0.8188 0.8188 0.8188
0.3197 2.0833 800 0.7777 0.7353 0.7353 0.7353 0.7353
0.267 2.6042 1000 0.7223 0.7679 0.7679 0.7679 0.7679
0.2272 3.125 1200 0.4841 0.8201 0.8201 0.8201 0.8201
0.1848 3.6458 1400 0.4985 0.8227 0.8227 0.8227 0.8227
0.1744 4.1667 1600 0.6254 0.8044 0.8044 0.8044 0.8044
0.1402 4.6875 1800 0.5963 0.8123 0.8123 0.8123 0.8123

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1