--- base_model: Qwen/Qwen2-7B library_name: peft license: apache-2.0 metrics: - accuracy - precision - recall tags: - generated_from_trainer model-index: - name: Qwen2_7B_Task2_semantic_pred results: [] --- # Qwen2_7B_Task2_semantic_pred This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co./Qwen/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5963 - Accuracy: 0.8123 - Precision: 0.8123 - Recall: 0.8123 - F1 score: 0.8123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.6405 | 0.5208 | 200 | 0.5790 | 0.7666 | 0.7666 | 0.7666 | 0.7666 | | 0.4689 | 1.0417 | 400 | 0.9852 | 0.6649 | 0.6649 | 0.6649 | 0.6649 | | 0.3635 | 1.5625 | 600 | 0.4249 | 0.8188 | 0.8188 | 0.8188 | 0.8188 | | 0.3197 | 2.0833 | 800 | 0.7777 | 0.7353 | 0.7353 | 0.7353 | 0.7353 | | 0.267 | 2.6042 | 1000 | 0.7223 | 0.7679 | 0.7679 | 0.7679 | 0.7679 | | 0.2272 | 3.125 | 1200 | 0.4841 | 0.8201 | 0.8201 | 0.8201 | 0.8201 | | 0.1848 | 3.6458 | 1400 | 0.4985 | 0.8227 | 0.8227 | 0.8227 | 0.8227 | | 0.1744 | 4.1667 | 1600 | 0.6254 | 0.8044 | 0.8044 | 0.8044 | 0.8044 | | 0.1402 | 4.6875 | 1800 | 0.5963 | 0.8123 | 0.8123 | 0.8123 | 0.8123 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.20.0 - Tokenizers 0.19.1