metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- data_tcd_india
metrics:
- wer
model-index:
- name: Whisper Small TCD
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: data_tcd
type: data_tcd_india
args: 'config: english, split: test'
metrics:
- name: Wer
type: wer
value: 4.473391433339515
Whisper Small TCD
This model is a fine-tuned version of openai/whisper-small on the data_tcd dataset. It achieves the following results on the evaluation set:
- Loss: 0.1792
- Wer: 4.4734
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0144 | 3.4364 | 1000 | 0.1505 | 4.5337 |
0.0012 | 6.8729 | 2000 | 0.1699 | 4.4641 |
0.0004 | 10.3093 | 3000 | 0.1792 | 4.4734 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0