--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - data_tcd_india metrics: - wer model-index: - name: Whisper Small TCD results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: data_tcd type: data_tcd_india args: 'config: english, split: test' metrics: - name: Wer type: wer value: 4.473391433339515 --- # Whisper Small TCD This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the data_tcd dataset. It achieves the following results on the evaluation set: - Loss: 0.1792 - Wer: 4.4734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0144 | 3.4364 | 1000 | 0.1505 | 4.5337 | | 0.0012 | 6.8729 | 2000 | 0.1699 | 4.4641 | | 0.0004 | 10.3093 | 3000 | 0.1792 | 4.4734 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0