metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
As of January 31, 2023, the Company's net operating loss and capital loss
carryforwards totaled approximately $32.3 billion.
sentences:
- >-
What was the percentage change in general and administrative expenses in
2023 compared to 2022?
- >-
What was the amount of the company's net operating loss and capital loss
carryforwards as of January 31, 2023?
- What are common challenges in pharmaceutical research and development?
- source_sentence: >-
A 0.50% increase in completion factors, which consider aspects like claim
levels and processing cycles, raises medical costs payable by $585 million
as of December 31, 2023.
sentences:
- What were the total assets of Hasbro, Inc. as of December 31, 2023?
- >-
How does a 0.50% increase in completion factors impact medical costs
payable as of December 31, 2023?
- >-
By what percentage did Gaming revenue change in fiscal year 2023
compared to fiscal year 2022?
- source_sentence: >-
Alex G. Balazs was appointed as the Executive Vice President and Chief
Technology Officer effective September 5, 2023.
sentences:
- >-
When was Alex G. Balazs appointed as the Executive Vice President and
Chief Technology Officer?
- What was AMC's minimum liquidity requirement under the Credit Agreement?
- >-
What was the nature of the legal action initiated by Aqua-Chem against
the company in Wisconsin on the same day the company filed its lawsuit?
- source_sentence: Item 8. Financial Statements and Supplementary Data
sentences:
- >-
How did the carrying amount of goodwill change from March 31, 2022 to
March 31, 2023?
- >-
What types of revenue does the payments company generate from its
various products and services?
- What is the content of Item 8 in a financial document?
- source_sentence: >-
The company offers Medicare eligible persons under HMO, PPO, Private
Fee-For-Service, or PFFS, and Special Needs Plans, including Dual Eligible
Special Needs, or D-SNP, plans in exchange for contractual payments
received from CMS. With each of these products, the beneficiary receives
benefits in excess of Medicare FFS, typically including reduced cost
sharing, enhanced prescription drug benefits, care coordination, data
analysis techniques to help identify member needs, complex case
management, tools to guide members in their health care decisions, care
management programs, wellness and prevention programs and, in some
instances, a reduced monthly Part B premium. Most Medicare Advantage plans
offer the prescription drug benefit under Part D as part of the basic
plan, subject to cost sharing and other limitations.
sentences:
- >-
What types of Medicare plans does the company offer and what are the key
benefits provided?
- >-
What were the total cash discounts provided by AbbVie in 2023, 2022, and
2021?
- >-
How does a company account for potential liabilities from legal
proceedings in its financial statements?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8371428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8371428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8100174465587288
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7773446712018138
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7807079942767247
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8078520466243649
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7740147392290249
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7772770435826438
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8271428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2757142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1737142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8271428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8048419939996826
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7705011337868479
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7738179161222841
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6814285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6814285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6814285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7983213130859076
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7624348072562357
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7654098753888775
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6628571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7985714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8414285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6628571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26619047619047614
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16828571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6628571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7985714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8414285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7801763622372425
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7428265306122449
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7467214067895231
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("riphunter7001x/bge-base-financial")
sentences = [
'The company offers Medicare eligible persons under HMO, PPO, Private Fee-For-Service, or PFFS, and Special Needs Plans, including Dual Eligible Special Needs, or D-SNP, plans in exchange for contractual payments received from CMS. With each of these products, the beneficiary receives benefits in excess of Medicare FFS, typically including reduced cost sharing, enhanced prescription drug benefits, care coordination, data analysis techniques to help identify member needs, complex case management, tools to guide members in their health care decisions, care management programs, wellness and prevention programs and, in some instances, a reduced monthly Part B premium. Most Medicare Advantage plans offer the prescription drug benefit under Part D as part of the basic plan, subject to cost sharing and other limitations.',
'What types of Medicare plans does the company offer and what are the key benefits provided?',
'What were the total cash discounts provided by AbbVie in 2023, 2022, and 2021?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7029 |
cosine_accuracy@3 |
0.8371 |
cosine_accuracy@5 |
0.87 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.7029 |
cosine_precision@3 |
0.279 |
cosine_precision@5 |
0.174 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.7029 |
cosine_recall@3 |
0.8371 |
cosine_recall@5 |
0.87 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.81 |
cosine_mrr@10 |
0.7773 |
cosine_map@100 |
0.7807 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6943 |
cosine_accuracy@3 |
0.83 |
cosine_accuracy@5 |
0.87 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.6943 |
cosine_precision@3 |
0.2767 |
cosine_precision@5 |
0.174 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.6943 |
cosine_recall@3 |
0.83 |
cosine_recall@5 |
0.87 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8079 |
cosine_mrr@10 |
0.774 |
cosine_map@100 |
0.7773 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.8271 |
cosine_accuracy@5 |
0.8686 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.2757 |
cosine_precision@5 |
0.1737 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.8271 |
cosine_recall@5 |
0.8686 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.8048 |
cosine_mrr@10 |
0.7705 |
cosine_map@100 |
0.7738 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6814 |
cosine_accuracy@3 |
0.82 |
cosine_accuracy@5 |
0.8629 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.6814 |
cosine_precision@3 |
0.2733 |
cosine_precision@5 |
0.1726 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.6814 |
cosine_recall@3 |
0.82 |
cosine_recall@5 |
0.8629 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.7983 |
cosine_mrr@10 |
0.7624 |
cosine_map@100 |
0.7654 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6629 |
cosine_accuracy@3 |
0.7986 |
cosine_accuracy@5 |
0.8414 |
cosine_accuracy@10 |
0.8971 |
cosine_precision@1 |
0.6629 |
cosine_precision@3 |
0.2662 |
cosine_precision@5 |
0.1683 |
cosine_precision@10 |
0.0897 |
cosine_recall@1 |
0.6629 |
cosine_recall@3 |
0.7986 |
cosine_recall@5 |
0.8414 |
cosine_recall@10 |
0.8971 |
cosine_ndcg@10 |
0.7802 |
cosine_mrr@10 |
0.7428 |
cosine_map@100 |
0.7467 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 45.98 tokens
- max: 208 tokens
|
- min: 2 tokens
- mean: 20.76 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
Adjusted EBITDA does not reflect costs associated with product recall related matters including adjustments to the return reserves, inventory write-downs, logistics costs associated with Member requests, the cost to move the recalled product for those that elect the option, subscription waiver costs of service, and recall-related hardware development and repair costs. |
What specific costs associated with product recalls are excluded from Adjusted EBITDA? |
The Company sold $17,704 million and $10,709 million of trade accounts receivables under this program during the years ended December 31, 2023 and 2022, respectively. |
How much did the Company sell in trade accounts receivables in the year ended December 31, 2023? |
Free cash flow less equipment finance leases and principal repayments of all other finance leases and financing obligations was -$12,786 million in 2022 and improved to $35,549 million in 2023. |
How did the free cash flow less equipment finance leases and principal repayments of all other finance leases and financing obligations change from 2022 to 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 10
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.2538 |
100 |
2.4219 |
0.7320 |
0.7542 |
0.7582 |
0.6929 |
0.7561 |
0.5076 |
200 |
0.468 |
0.7343 |
0.7543 |
0.7574 |
0.7044 |
0.7569 |
0.7614 |
300 |
0.3159 |
0.7569 |
0.7691 |
0.7749 |
0.7288 |
0.7713 |
1.0152 |
400 |
0.317 |
0.7455 |
0.7607 |
0.7646 |
0.7124 |
0.7643 |
1.2690 |
500 |
0.2062 |
0.7465 |
0.7691 |
0.7741 |
0.7211 |
0.7748 |
1.5228 |
600 |
0.1075 |
0.7495 |
0.7599 |
0.7696 |
0.7214 |
0.7697 |
1.7766 |
700 |
0.1079 |
0.7572 |
0.7660 |
0.7752 |
0.7287 |
0.7764 |
2.0305 |
800 |
0.0477 |
0.7447 |
0.7696 |
0.7760 |
0.7211 |
0.7786 |
2.2843 |
900 |
0.0547 |
0.7569 |
0.7728 |
0.7757 |
0.7406 |
0.7746 |
2.5381 |
1000 |
0.0283 |
0.7668 |
0.7756 |
0.7823 |
0.7414 |
0.7841 |
2.7919 |
1100 |
0.0268 |
0.7540 |
0.7673 |
0.7766 |
0.7432 |
0.7748 |
3.0457 |
1200 |
0.0201 |
0.7633 |
0.7739 |
0.7799 |
0.7411 |
0.7775 |
3.2995 |
1300 |
0.0174 |
0.7635 |
0.7745 |
0.7856 |
0.7469 |
0.7851 |
3.5533 |
1400 |
0.0161 |
0.7595 |
0.7765 |
0.7825 |
0.7412 |
0.7782 |
3.8071 |
1500 |
0.0071 |
0.7552 |
0.7680 |
0.7754 |
0.7395 |
0.7739 |
4.0609 |
1600 |
0.009 |
0.7633 |
0.7767 |
0.7834 |
0.7423 |
0.7843 |
4.3147 |
1700 |
0.0079 |
0.7639 |
0.7714 |
0.7770 |
0.7414 |
0.7728 |
4.5685 |
1800 |
0.0109 |
0.7662 |
0.7775 |
0.7845 |
0.7369 |
0.7843 |
4.8223 |
1900 |
0.0024 |
0.7674 |
0.7732 |
0.7776 |
0.7425 |
0.7810 |
5.0761 |
2000 |
0.0052 |
0.7729 |
0.7746 |
0.7820 |
0.7455 |
0.7849 |
5.3299 |
2100 |
0.0022 |
0.7615 |
0.7754 |
0.7813 |
0.7446 |
0.7862 |
5.5838 |
2200 |
0.0065 |
0.7691 |
0.7761 |
0.7809 |
0.7437 |
0.7777 |
5.8376 |
2300 |
0.0011 |
0.7672 |
0.7728 |
0.7757 |
0.7446 |
0.7772 |
6.0914 |
2400 |
0.0046 |
0.7671 |
0.7778 |
0.7805 |
0.7494 |
0.7838 |
6.3452 |
2500 |
0.0013 |
0.7655 |
0.7732 |
0.7780 |
0.7478 |
0.7806 |
6.5990 |
2600 |
0.0058 |
0.7673 |
0.7753 |
0.7779 |
0.7542 |
0.7797 |
6.8528 |
2700 |
0.001 |
0.7654 |
0.7716 |
0.7738 |
0.7535 |
0.7776 |
7.1066 |
2800 |
0.0071 |
0.7684 |
0.7754 |
0.7792 |
0.7518 |
0.7824 |
7.3604 |
2900 |
0.001 |
0.7723 |
0.7765 |
0.7814 |
0.7502 |
0.7826 |
7.6142 |
3000 |
0.0028 |
0.7720 |
0.7754 |
0.7807 |
0.7498 |
0.7806 |
7.8680 |
3100 |
0.0007 |
0.7685 |
0.7728 |
0.7773 |
0.7475 |
0.7816 |
8.1218 |
3200 |
0.004 |
0.7690 |
0.7741 |
0.7773 |
0.7496 |
0.7806 |
8.3756 |
3300 |
0.0006 |
0.7683 |
0.7723 |
0.7755 |
0.7491 |
0.7791 |
8.6294 |
3400 |
0.0011 |
0.7678 |
0.7724 |
0.7756 |
0.7508 |
0.7804 |
8.8832 |
3500 |
0.0006 |
0.7655 |
0.7721 |
0.7769 |
0.7467 |
0.7825 |
9.1371 |
3600 |
0.0013 |
0.7674 |
0.7751 |
0.7788 |
0.7463 |
0.7802 |
9.3909 |
3700 |
0.0006 |
0.7664 |
0.7741 |
0.7793 |
0.7468 |
0.7821 |
9.6447 |
3800 |
0.0011 |
0.7662 |
0.7753 |
0.7782 |
0.7481 |
0.7803 |
9.8985 |
3900 |
0.0005 |
0.7654 |
0.7738 |
0.7773 |
0.7467 |
0.7807 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}