riphunter7001x commited on
Commit
8183a66
1 Parent(s): 468468c

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,838 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:6300
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: As of January 31, 2023, the Company's net operating loss and capital
34
+ loss carryforwards totaled approximately $32.3 billion.
35
+ sentences:
36
+ - What was the percentage change in general and administrative expenses in 2023
37
+ compared to 2022?
38
+ - What was the amount of the company's net operating loss and capital loss carryforwards
39
+ as of January 31, 2023?
40
+ - What are common challenges in pharmaceutical research and development?
41
+ - source_sentence: A 0.50% increase in completion factors, which consider aspects
42
+ like claim levels and processing cycles, raises medical costs payable by $585
43
+ million as of December 31, 2023.
44
+ sentences:
45
+ - What were the total assets of Hasbro, Inc. as of December 31, 2023?
46
+ - How does a 0.50% increase in completion factors impact medical costs payable as
47
+ of December 31, 2023?
48
+ - By what percentage did Gaming revenue change in fiscal year 2023 compared to fiscal
49
+ year 2022?
50
+ - source_sentence: Alex G. Balazs was appointed as the Executive Vice President and
51
+ Chief Technology Officer effective September 5, 2023.
52
+ sentences:
53
+ - When was Alex G. Balazs appointed as the Executive Vice President and Chief Technology
54
+ Officer?
55
+ - What was AMC's minimum liquidity requirement under the Credit Agreement?
56
+ - What was the nature of the legal action initiated by Aqua-Chem against the company
57
+ in Wisconsin on the same day the company filed its lawsuit?
58
+ - source_sentence: Item 8. Financial Statements and Supplementary Data
59
+ sentences:
60
+ - How did the carrying amount of goodwill change from March 31, 2022 to March 31,
61
+ 2023?
62
+ - What types of revenue does the payments company generate from its various products
63
+ and services?
64
+ - What is the content of Item 8 in a financial document?
65
+ - source_sentence: The company offers Medicare eligible persons under HMO, PPO, Private
66
+ Fee-For-Service, or PFFS, and Special Needs Plans, including Dual Eligible Special
67
+ Needs, or D-SNP, plans in exchange for contractual payments received from CMS.
68
+ With each of these products, the beneficiary receives benefits in excess of Medicare
69
+ FFS, typically including reduced cost sharing, enhanced prescription drug benefits,
70
+ care coordination, data analysis techniques to help identify member needs, complex
71
+ case management, tools to guide members in their health care decisions, care management
72
+ programs, wellness and prevention programs and, in some instances, a reduced monthly
73
+ Part B premium. Most Medicare Advantage plans offer the prescription drug benefit
74
+ under Part D as part of the basic plan, subject to cost sharing and other limitations.
75
+ sentences:
76
+ - What types of Medicare plans does the company offer and what are the key benefits
77
+ provided?
78
+ - What were the total cash discounts provided by AbbVie in 2023, 2022, and 2021?
79
+ - How does a company account for potential liabilities from legal proceedings in
80
+ its financial statements?
81
+ pipeline_tag: sentence-similarity
82
+ model-index:
83
+ - name: BGE base Financial Matryoshka
84
+ results:
85
+ - task:
86
+ type: information-retrieval
87
+ name: Information Retrieval
88
+ dataset:
89
+ name: dim 768
90
+ type: dim_768
91
+ metrics:
92
+ - type: cosine_accuracy@1
93
+ value: 0.7028571428571428
94
+ name: Cosine Accuracy@1
95
+ - type: cosine_accuracy@3
96
+ value: 0.8371428571428572
97
+ name: Cosine Accuracy@3
98
+ - type: cosine_accuracy@5
99
+ value: 0.87
100
+ name: Cosine Accuracy@5
101
+ - type: cosine_accuracy@10
102
+ value: 0.9114285714285715
103
+ name: Cosine Accuracy@10
104
+ - type: cosine_precision@1
105
+ value: 0.7028571428571428
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@3
108
+ value: 0.27904761904761904
109
+ name: Cosine Precision@3
110
+ - type: cosine_precision@5
111
+ value: 0.174
112
+ name: Cosine Precision@5
113
+ - type: cosine_precision@10
114
+ value: 0.09114285714285714
115
+ name: Cosine Precision@10
116
+ - type: cosine_recall@1
117
+ value: 0.7028571428571428
118
+ name: Cosine Recall@1
119
+ - type: cosine_recall@3
120
+ value: 0.8371428571428572
121
+ name: Cosine Recall@3
122
+ - type: cosine_recall@5
123
+ value: 0.87
124
+ name: Cosine Recall@5
125
+ - type: cosine_recall@10
126
+ value: 0.9114285714285715
127
+ name: Cosine Recall@10
128
+ - type: cosine_ndcg@10
129
+ value: 0.8100174465587288
130
+ name: Cosine Ndcg@10
131
+ - type: cosine_mrr@10
132
+ value: 0.7773446712018138
133
+ name: Cosine Mrr@10
134
+ - type: cosine_map@100
135
+ value: 0.7807079942767247
136
+ name: Cosine Map@100
137
+ - task:
138
+ type: information-retrieval
139
+ name: Information Retrieval
140
+ dataset:
141
+ name: dim 512
142
+ type: dim_512
143
+ metrics:
144
+ - type: cosine_accuracy@1
145
+ value: 0.6942857142857143
146
+ name: Cosine Accuracy@1
147
+ - type: cosine_accuracy@3
148
+ value: 0.83
149
+ name: Cosine Accuracy@3
150
+ - type: cosine_accuracy@5
151
+ value: 0.87
152
+ name: Cosine Accuracy@5
153
+ - type: cosine_accuracy@10
154
+ value: 0.9128571428571428
155
+ name: Cosine Accuracy@10
156
+ - type: cosine_precision@1
157
+ value: 0.6942857142857143
158
+ name: Cosine Precision@1
159
+ - type: cosine_precision@3
160
+ value: 0.27666666666666667
161
+ name: Cosine Precision@3
162
+ - type: cosine_precision@5
163
+ value: 0.174
164
+ name: Cosine Precision@5
165
+ - type: cosine_precision@10
166
+ value: 0.09128571428571428
167
+ name: Cosine Precision@10
168
+ - type: cosine_recall@1
169
+ value: 0.6942857142857143
170
+ name: Cosine Recall@1
171
+ - type: cosine_recall@3
172
+ value: 0.83
173
+ name: Cosine Recall@3
174
+ - type: cosine_recall@5
175
+ value: 0.87
176
+ name: Cosine Recall@5
177
+ - type: cosine_recall@10
178
+ value: 0.9128571428571428
179
+ name: Cosine Recall@10
180
+ - type: cosine_ndcg@10
181
+ value: 0.8078520466243649
182
+ name: Cosine Ndcg@10
183
+ - type: cosine_mrr@10
184
+ value: 0.7740147392290249
185
+ name: Cosine Mrr@10
186
+ - type: cosine_map@100
187
+ value: 0.7772770435826438
188
+ name: Cosine Map@100
189
+ - task:
190
+ type: information-retrieval
191
+ name: Information Retrieval
192
+ dataset:
193
+ name: dim 256
194
+ type: dim_256
195
+ metrics:
196
+ - type: cosine_accuracy@1
197
+ value: 0.6914285714285714
198
+ name: Cosine Accuracy@1
199
+ - type: cosine_accuracy@3
200
+ value: 0.8271428571428572
201
+ name: Cosine Accuracy@3
202
+ - type: cosine_accuracy@5
203
+ value: 0.8685714285714285
204
+ name: Cosine Accuracy@5
205
+ - type: cosine_accuracy@10
206
+ value: 0.9114285714285715
207
+ name: Cosine Accuracy@10
208
+ - type: cosine_precision@1
209
+ value: 0.6914285714285714
210
+ name: Cosine Precision@1
211
+ - type: cosine_precision@3
212
+ value: 0.2757142857142857
213
+ name: Cosine Precision@3
214
+ - type: cosine_precision@5
215
+ value: 0.1737142857142857
216
+ name: Cosine Precision@5
217
+ - type: cosine_precision@10
218
+ value: 0.09114285714285712
219
+ name: Cosine Precision@10
220
+ - type: cosine_recall@1
221
+ value: 0.6914285714285714
222
+ name: Cosine Recall@1
223
+ - type: cosine_recall@3
224
+ value: 0.8271428571428572
225
+ name: Cosine Recall@3
226
+ - type: cosine_recall@5
227
+ value: 0.8685714285714285
228
+ name: Cosine Recall@5
229
+ - type: cosine_recall@10
230
+ value: 0.9114285714285715
231
+ name: Cosine Recall@10
232
+ - type: cosine_ndcg@10
233
+ value: 0.8048419939996826
234
+ name: Cosine Ndcg@10
235
+ - type: cosine_mrr@10
236
+ value: 0.7705011337868479
237
+ name: Cosine Mrr@10
238
+ - type: cosine_map@100
239
+ value: 0.7738179161222841
240
+ name: Cosine Map@100
241
+ - task:
242
+ type: information-retrieval
243
+ name: Information Retrieval
244
+ dataset:
245
+ name: dim 128
246
+ type: dim_128
247
+ metrics:
248
+ - type: cosine_accuracy@1
249
+ value: 0.6814285714285714
250
+ name: Cosine Accuracy@1
251
+ - type: cosine_accuracy@3
252
+ value: 0.82
253
+ name: Cosine Accuracy@3
254
+ - type: cosine_accuracy@5
255
+ value: 0.8628571428571429
256
+ name: Cosine Accuracy@5
257
+ - type: cosine_accuracy@10
258
+ value: 0.91
259
+ name: Cosine Accuracy@10
260
+ - type: cosine_precision@1
261
+ value: 0.6814285714285714
262
+ name: Cosine Precision@1
263
+ - type: cosine_precision@3
264
+ value: 0.2733333333333333
265
+ name: Cosine Precision@3
266
+ - type: cosine_precision@5
267
+ value: 0.17257142857142854
268
+ name: Cosine Precision@5
269
+ - type: cosine_precision@10
270
+ value: 0.09099999999999998
271
+ name: Cosine Precision@10
272
+ - type: cosine_recall@1
273
+ value: 0.6814285714285714
274
+ name: Cosine Recall@1
275
+ - type: cosine_recall@3
276
+ value: 0.82
277
+ name: Cosine Recall@3
278
+ - type: cosine_recall@5
279
+ value: 0.8628571428571429
280
+ name: Cosine Recall@5
281
+ - type: cosine_recall@10
282
+ value: 0.91
283
+ name: Cosine Recall@10
284
+ - type: cosine_ndcg@10
285
+ value: 0.7983213130859076
286
+ name: Cosine Ndcg@10
287
+ - type: cosine_mrr@10
288
+ value: 0.7624348072562357
289
+ name: Cosine Mrr@10
290
+ - type: cosine_map@100
291
+ value: 0.7654098753888775
292
+ name: Cosine Map@100
293
+ - task:
294
+ type: information-retrieval
295
+ name: Information Retrieval
296
+ dataset:
297
+ name: dim 64
298
+ type: dim_64
299
+ metrics:
300
+ - type: cosine_accuracy@1
301
+ value: 0.6628571428571428
302
+ name: Cosine Accuracy@1
303
+ - type: cosine_accuracy@3
304
+ value: 0.7985714285714286
305
+ name: Cosine Accuracy@3
306
+ - type: cosine_accuracy@5
307
+ value: 0.8414285714285714
308
+ name: Cosine Accuracy@5
309
+ - type: cosine_accuracy@10
310
+ value: 0.8971428571428571
311
+ name: Cosine Accuracy@10
312
+ - type: cosine_precision@1
313
+ value: 0.6628571428571428
314
+ name: Cosine Precision@1
315
+ - type: cosine_precision@3
316
+ value: 0.26619047619047614
317
+ name: Cosine Precision@3
318
+ - type: cosine_precision@5
319
+ value: 0.16828571428571426
320
+ name: Cosine Precision@5
321
+ - type: cosine_precision@10
322
+ value: 0.0897142857142857
323
+ name: Cosine Precision@10
324
+ - type: cosine_recall@1
325
+ value: 0.6628571428571428
326
+ name: Cosine Recall@1
327
+ - type: cosine_recall@3
328
+ value: 0.7985714285714286
329
+ name: Cosine Recall@3
330
+ - type: cosine_recall@5
331
+ value: 0.8414285714285714
332
+ name: Cosine Recall@5
333
+ - type: cosine_recall@10
334
+ value: 0.8971428571428571
335
+ name: Cosine Recall@10
336
+ - type: cosine_ndcg@10
337
+ value: 0.7801763622372425
338
+ name: Cosine Ndcg@10
339
+ - type: cosine_mrr@10
340
+ value: 0.7428265306122449
341
+ name: Cosine Mrr@10
342
+ - type: cosine_map@100
343
+ value: 0.7467214067895231
344
+ name: Cosine Map@100
345
+ ---
346
+
347
+ # BGE base Financial Matryoshka
348
+
349
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
350
+
351
+ ## Model Details
352
+
353
+ ### Model Description
354
+ - **Model Type:** Sentence Transformer
355
+ - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
356
+ - **Maximum Sequence Length:** 512 tokens
357
+ - **Output Dimensionality:** 768 tokens
358
+ - **Similarity Function:** Cosine Similarity
359
+ <!-- - **Training Dataset:** Unknown -->
360
+ - **Language:** en
361
+ - **License:** apache-2.0
362
+
363
+ ### Model Sources
364
+
365
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
366
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
367
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
368
+
369
+ ### Full Model Architecture
370
+
371
+ ```
372
+ SentenceTransformer(
373
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
374
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
375
+ (2): Normalize()
376
+ )
377
+ ```
378
+
379
+ ## Usage
380
+
381
+ ### Direct Usage (Sentence Transformers)
382
+
383
+ First install the Sentence Transformers library:
384
+
385
+ ```bash
386
+ pip install -U sentence-transformers
387
+ ```
388
+
389
+ Then you can load this model and run inference.
390
+ ```python
391
+ from sentence_transformers import SentenceTransformer
392
+
393
+ # Download from the 🤗 Hub
394
+ model = SentenceTransformer("riphunter7001x/bge-base-financial")
395
+ # Run inference
396
+ sentences = [
397
+ 'The company offers Medicare eligible persons under HMO, PPO, Private Fee-For-Service, or PFFS, and Special Needs Plans, including Dual Eligible Special Needs, or D-SNP, plans in exchange for contractual payments received from CMS. With each of these products, the beneficiary receives benefits in excess of Medicare FFS, typically including reduced cost sharing, enhanced prescription drug benefits, care coordination, data analysis techniques to help identify member needs, complex case management, tools to guide members in their health care decisions, care management programs, wellness and prevention programs and, in some instances, a reduced monthly Part B premium. Most Medicare Advantage plans offer the prescription drug benefit under Part D as part of the basic plan, subject to cost sharing and other limitations.',
398
+ 'What types of Medicare plans does the company offer and what are the key benefits provided?',
399
+ 'What were the total cash discounts provided by AbbVie in 2023, 2022, and 2021?',
400
+ ]
401
+ embeddings = model.encode(sentences)
402
+ print(embeddings.shape)
403
+ # [3, 768]
404
+
405
+ # Get the similarity scores for the embeddings
406
+ similarities = model.similarity(embeddings, embeddings)
407
+ print(similarities.shape)
408
+ # [3, 3]
409
+ ```
410
+
411
+ <!--
412
+ ### Direct Usage (Transformers)
413
+
414
+ <details><summary>Click to see the direct usage in Transformers</summary>
415
+
416
+ </details>
417
+ -->
418
+
419
+ <!--
420
+ ### Downstream Usage (Sentence Transformers)
421
+
422
+ You can finetune this model on your own dataset.
423
+
424
+ <details><summary>Click to expand</summary>
425
+
426
+ </details>
427
+ -->
428
+
429
+ <!--
430
+ ### Out-of-Scope Use
431
+
432
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
433
+ -->
434
+
435
+ ## Evaluation
436
+
437
+ ### Metrics
438
+
439
+ #### Information Retrieval
440
+ * Dataset: `dim_768`
441
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
442
+
443
+ | Metric | Value |
444
+ |:--------------------|:-----------|
445
+ | cosine_accuracy@1 | 0.7029 |
446
+ | cosine_accuracy@3 | 0.8371 |
447
+ | cosine_accuracy@5 | 0.87 |
448
+ | cosine_accuracy@10 | 0.9114 |
449
+ | cosine_precision@1 | 0.7029 |
450
+ | cosine_precision@3 | 0.279 |
451
+ | cosine_precision@5 | 0.174 |
452
+ | cosine_precision@10 | 0.0911 |
453
+ | cosine_recall@1 | 0.7029 |
454
+ | cosine_recall@3 | 0.8371 |
455
+ | cosine_recall@5 | 0.87 |
456
+ | cosine_recall@10 | 0.9114 |
457
+ | cosine_ndcg@10 | 0.81 |
458
+ | cosine_mrr@10 | 0.7773 |
459
+ | **cosine_map@100** | **0.7807** |
460
+
461
+ #### Information Retrieval
462
+ * Dataset: `dim_512`
463
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
464
+
465
+ | Metric | Value |
466
+ |:--------------------|:-----------|
467
+ | cosine_accuracy@1 | 0.6943 |
468
+ | cosine_accuracy@3 | 0.83 |
469
+ | cosine_accuracy@5 | 0.87 |
470
+ | cosine_accuracy@10 | 0.9129 |
471
+ | cosine_precision@1 | 0.6943 |
472
+ | cosine_precision@3 | 0.2767 |
473
+ | cosine_precision@5 | 0.174 |
474
+ | cosine_precision@10 | 0.0913 |
475
+ | cosine_recall@1 | 0.6943 |
476
+ | cosine_recall@3 | 0.83 |
477
+ | cosine_recall@5 | 0.87 |
478
+ | cosine_recall@10 | 0.9129 |
479
+ | cosine_ndcg@10 | 0.8079 |
480
+ | cosine_mrr@10 | 0.774 |
481
+ | **cosine_map@100** | **0.7773** |
482
+
483
+ #### Information Retrieval
484
+ * Dataset: `dim_256`
485
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
486
+
487
+ | Metric | Value |
488
+ |:--------------------|:-----------|
489
+ | cosine_accuracy@1 | 0.6914 |
490
+ | cosine_accuracy@3 | 0.8271 |
491
+ | cosine_accuracy@5 | 0.8686 |
492
+ | cosine_accuracy@10 | 0.9114 |
493
+ | cosine_precision@1 | 0.6914 |
494
+ | cosine_precision@3 | 0.2757 |
495
+ | cosine_precision@5 | 0.1737 |
496
+ | cosine_precision@10 | 0.0911 |
497
+ | cosine_recall@1 | 0.6914 |
498
+ | cosine_recall@3 | 0.8271 |
499
+ | cosine_recall@5 | 0.8686 |
500
+ | cosine_recall@10 | 0.9114 |
501
+ | cosine_ndcg@10 | 0.8048 |
502
+ | cosine_mrr@10 | 0.7705 |
503
+ | **cosine_map@100** | **0.7738** |
504
+
505
+ #### Information Retrieval
506
+ * Dataset: `dim_128`
507
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
508
+
509
+ | Metric | Value |
510
+ |:--------------------|:-----------|
511
+ | cosine_accuracy@1 | 0.6814 |
512
+ | cosine_accuracy@3 | 0.82 |
513
+ | cosine_accuracy@5 | 0.8629 |
514
+ | cosine_accuracy@10 | 0.91 |
515
+ | cosine_precision@1 | 0.6814 |
516
+ | cosine_precision@3 | 0.2733 |
517
+ | cosine_precision@5 | 0.1726 |
518
+ | cosine_precision@10 | 0.091 |
519
+ | cosine_recall@1 | 0.6814 |
520
+ | cosine_recall@3 | 0.82 |
521
+ | cosine_recall@5 | 0.8629 |
522
+ | cosine_recall@10 | 0.91 |
523
+ | cosine_ndcg@10 | 0.7983 |
524
+ | cosine_mrr@10 | 0.7624 |
525
+ | **cosine_map@100** | **0.7654** |
526
+
527
+ #### Information Retrieval
528
+ * Dataset: `dim_64`
529
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
530
+
531
+ | Metric | Value |
532
+ |:--------------------|:-----------|
533
+ | cosine_accuracy@1 | 0.6629 |
534
+ | cosine_accuracy@3 | 0.7986 |
535
+ | cosine_accuracy@5 | 0.8414 |
536
+ | cosine_accuracy@10 | 0.8971 |
537
+ | cosine_precision@1 | 0.6629 |
538
+ | cosine_precision@3 | 0.2662 |
539
+ | cosine_precision@5 | 0.1683 |
540
+ | cosine_precision@10 | 0.0897 |
541
+ | cosine_recall@1 | 0.6629 |
542
+ | cosine_recall@3 | 0.7986 |
543
+ | cosine_recall@5 | 0.8414 |
544
+ | cosine_recall@10 | 0.8971 |
545
+ | cosine_ndcg@10 | 0.7802 |
546
+ | cosine_mrr@10 | 0.7428 |
547
+ | **cosine_map@100** | **0.7467** |
548
+
549
+ <!--
550
+ ## Bias, Risks and Limitations
551
+
552
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
553
+ -->
554
+
555
+ <!--
556
+ ### Recommendations
557
+
558
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
559
+ -->
560
+
561
+ ## Training Details
562
+
563
+ ### Training Dataset
564
+
565
+ #### Unnamed Dataset
566
+
567
+
568
+ * Size: 6,300 training samples
569
+ * Columns: <code>positive</code> and <code>anchor</code>
570
+ * Approximate statistics based on the first 1000 samples:
571
+ | | positive | anchor |
572
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
573
+ | type | string | string |
574
+ | details | <ul><li>min: 2 tokens</li><li>mean: 45.98 tokens</li><li>max: 208 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.76 tokens</li><li>max: 43 tokens</li></ul> |
575
+ * Samples:
576
+ | positive | anchor |
577
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
578
+ | <code>Adjusted EBITDA does not reflect costs associated with product recall related matters including adjustments to the return reserves, inventory write-downs, logistics costs associated with Member requests, the cost to move the recalled product for those that elect the option, subscription waiver costs of service, and recall-related hardware development and repair costs.</code> | <code>What specific costs associated with product recalls are excluded from Adjusted EBITDA?</code> |
579
+ | <code>The Company sold $17,704 million and $10,709 million of trade accounts receivables under this program during the years ended December 31, 2023 and 2022, respectively.</code> | <code>How much did the Company sell in trade accounts receivables in the year ended December 31, 2023?</code> |
580
+ | <code>Free cash flow less equipment finance leases and principal repayments of all other finance leases and financing obligations was -$12,786 million in 2022 and improved to $35,549 million in 2023.</code> | <code>How did the free cash flow less equipment finance leases and principal repayments of all other finance leases and financing obligations change from 2022 to 2023?</code> |
581
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
582
+ ```json
583
+ {
584
+ "loss": "MultipleNegativesRankingLoss",
585
+ "matryoshka_dims": [
586
+ 768,
587
+ 512,
588
+ 256,
589
+ 128,
590
+ 64
591
+ ],
592
+ "matryoshka_weights": [
593
+ 1,
594
+ 1,
595
+ 1,
596
+ 1,
597
+ 1
598
+ ],
599
+ "n_dims_per_step": -1
600
+ }
601
+ ```
602
+
603
+ ### Training Hyperparameters
604
+ #### Non-Default Hyperparameters
605
+
606
+ - `eval_strategy`: steps
607
+ - `per_device_train_batch_size`: 16
608
+ - `per_device_eval_batch_size`: 16
609
+ - `num_train_epochs`: 10
610
+ - `warmup_ratio`: 0.1
611
+ - `fp16`: True
612
+ - `batch_sampler`: no_duplicates
613
+
614
+ #### All Hyperparameters
615
+ <details><summary>Click to expand</summary>
616
+
617
+ - `overwrite_output_dir`: False
618
+ - `do_predict`: False
619
+ - `eval_strategy`: steps
620
+ - `prediction_loss_only`: True
621
+ - `per_device_train_batch_size`: 16
622
+ - `per_device_eval_batch_size`: 16
623
+ - `per_gpu_train_batch_size`: None
624
+ - `per_gpu_eval_batch_size`: None
625
+ - `gradient_accumulation_steps`: 1
626
+ - `eval_accumulation_steps`: None
627
+ - `learning_rate`: 5e-05
628
+ - `weight_decay`: 0.0
629
+ - `adam_beta1`: 0.9
630
+ - `adam_beta2`: 0.999
631
+ - `adam_epsilon`: 1e-08
632
+ - `max_grad_norm`: 1.0
633
+ - `num_train_epochs`: 10
634
+ - `max_steps`: -1
635
+ - `lr_scheduler_type`: linear
636
+ - `lr_scheduler_kwargs`: {}
637
+ - `warmup_ratio`: 0.1
638
+ - `warmup_steps`: 0
639
+ - `log_level`: passive
640
+ - `log_level_replica`: warning
641
+ - `log_on_each_node`: True
642
+ - `logging_nan_inf_filter`: True
643
+ - `save_safetensors`: True
644
+ - `save_on_each_node`: False
645
+ - `save_only_model`: False
646
+ - `restore_callback_states_from_checkpoint`: False
647
+ - `no_cuda`: False
648
+ - `use_cpu`: False
649
+ - `use_mps_device`: False
650
+ - `seed`: 42
651
+ - `data_seed`: None
652
+ - `jit_mode_eval`: False
653
+ - `use_ipex`: False
654
+ - `bf16`: False
655
+ - `fp16`: True
656
+ - `fp16_opt_level`: O1
657
+ - `half_precision_backend`: auto
658
+ - `bf16_full_eval`: False
659
+ - `fp16_full_eval`: False
660
+ - `tf32`: None
661
+ - `local_rank`: 0
662
+ - `ddp_backend`: None
663
+ - `tpu_num_cores`: None
664
+ - `tpu_metrics_debug`: False
665
+ - `debug`: []
666
+ - `dataloader_drop_last`: False
667
+ - `dataloader_num_workers`: 0
668
+ - `dataloader_prefetch_factor`: None
669
+ - `past_index`: -1
670
+ - `disable_tqdm`: False
671
+ - `remove_unused_columns`: True
672
+ - `label_names`: None
673
+ - `load_best_model_at_end`: False
674
+ - `ignore_data_skip`: False
675
+ - `fsdp`: []
676
+ - `fsdp_min_num_params`: 0
677
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
678
+ - `fsdp_transformer_layer_cls_to_wrap`: None
679
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
680
+ - `deepspeed`: None
681
+ - `label_smoothing_factor`: 0.0
682
+ - `optim`: adamw_torch
683
+ - `optim_args`: None
684
+ - `adafactor`: False
685
+ - `group_by_length`: False
686
+ - `length_column_name`: length
687
+ - `ddp_find_unused_parameters`: None
688
+ - `ddp_bucket_cap_mb`: None
689
+ - `ddp_broadcast_buffers`: False
690
+ - `dataloader_pin_memory`: True
691
+ - `dataloader_persistent_workers`: False
692
+ - `skip_memory_metrics`: True
693
+ - `use_legacy_prediction_loop`: False
694
+ - `push_to_hub`: False
695
+ - `resume_from_checkpoint`: None
696
+ - `hub_model_id`: None
697
+ - `hub_strategy`: every_save
698
+ - `hub_private_repo`: False
699
+ - `hub_always_push`: False
700
+ - `gradient_checkpointing`: False
701
+ - `gradient_checkpointing_kwargs`: None
702
+ - `include_inputs_for_metrics`: False
703
+ - `eval_do_concat_batches`: True
704
+ - `fp16_backend`: auto
705
+ - `push_to_hub_model_id`: None
706
+ - `push_to_hub_organization`: None
707
+ - `mp_parameters`:
708
+ - `auto_find_batch_size`: False
709
+ - `full_determinism`: False
710
+ - `torchdynamo`: None
711
+ - `ray_scope`: last
712
+ - `ddp_timeout`: 1800
713
+ - `torch_compile`: False
714
+ - `torch_compile_backend`: None
715
+ - `torch_compile_mode`: None
716
+ - `dispatch_batches`: None
717
+ - `split_batches`: None
718
+ - `include_tokens_per_second`: False
719
+ - `include_num_input_tokens_seen`: False
720
+ - `neftune_noise_alpha`: None
721
+ - `optim_target_modules`: None
722
+ - `batch_eval_metrics`: False
723
+ - `batch_sampler`: no_duplicates
724
+ - `multi_dataset_batch_sampler`: proportional
725
+
726
+ </details>
727
+
728
+ ### Training Logs
729
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
730
+ |:------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
731
+ | 0.2538 | 100 | 2.4219 | 0.7320 | 0.7542 | 0.7582 | 0.6929 | 0.7561 |
732
+ | 0.5076 | 200 | 0.468 | 0.7343 | 0.7543 | 0.7574 | 0.7044 | 0.7569 |
733
+ | 0.7614 | 300 | 0.3159 | 0.7569 | 0.7691 | 0.7749 | 0.7288 | 0.7713 |
734
+ | 1.0152 | 400 | 0.317 | 0.7455 | 0.7607 | 0.7646 | 0.7124 | 0.7643 |
735
+ | 1.2690 | 500 | 0.2062 | 0.7465 | 0.7691 | 0.7741 | 0.7211 | 0.7748 |
736
+ | 1.5228 | 600 | 0.1075 | 0.7495 | 0.7599 | 0.7696 | 0.7214 | 0.7697 |
737
+ | 1.7766 | 700 | 0.1079 | 0.7572 | 0.7660 | 0.7752 | 0.7287 | 0.7764 |
738
+ | 2.0305 | 800 | 0.0477 | 0.7447 | 0.7696 | 0.7760 | 0.7211 | 0.7786 |
739
+ | 2.2843 | 900 | 0.0547 | 0.7569 | 0.7728 | 0.7757 | 0.7406 | 0.7746 |
740
+ | 2.5381 | 1000 | 0.0283 | 0.7668 | 0.7756 | 0.7823 | 0.7414 | 0.7841 |
741
+ | 2.7919 | 1100 | 0.0268 | 0.7540 | 0.7673 | 0.7766 | 0.7432 | 0.7748 |
742
+ | 3.0457 | 1200 | 0.0201 | 0.7633 | 0.7739 | 0.7799 | 0.7411 | 0.7775 |
743
+ | 3.2995 | 1300 | 0.0174 | 0.7635 | 0.7745 | 0.7856 | 0.7469 | 0.7851 |
744
+ | 3.5533 | 1400 | 0.0161 | 0.7595 | 0.7765 | 0.7825 | 0.7412 | 0.7782 |
745
+ | 3.8071 | 1500 | 0.0071 | 0.7552 | 0.7680 | 0.7754 | 0.7395 | 0.7739 |
746
+ | 4.0609 | 1600 | 0.009 | 0.7633 | 0.7767 | 0.7834 | 0.7423 | 0.7843 |
747
+ | 4.3147 | 1700 | 0.0079 | 0.7639 | 0.7714 | 0.7770 | 0.7414 | 0.7728 |
748
+ | 4.5685 | 1800 | 0.0109 | 0.7662 | 0.7775 | 0.7845 | 0.7369 | 0.7843 |
749
+ | 4.8223 | 1900 | 0.0024 | 0.7674 | 0.7732 | 0.7776 | 0.7425 | 0.7810 |
750
+ | 5.0761 | 2000 | 0.0052 | 0.7729 | 0.7746 | 0.7820 | 0.7455 | 0.7849 |
751
+ | 5.3299 | 2100 | 0.0022 | 0.7615 | 0.7754 | 0.7813 | 0.7446 | 0.7862 |
752
+ | 5.5838 | 2200 | 0.0065 | 0.7691 | 0.7761 | 0.7809 | 0.7437 | 0.7777 |
753
+ | 5.8376 | 2300 | 0.0011 | 0.7672 | 0.7728 | 0.7757 | 0.7446 | 0.7772 |
754
+ | 6.0914 | 2400 | 0.0046 | 0.7671 | 0.7778 | 0.7805 | 0.7494 | 0.7838 |
755
+ | 6.3452 | 2500 | 0.0013 | 0.7655 | 0.7732 | 0.7780 | 0.7478 | 0.7806 |
756
+ | 6.5990 | 2600 | 0.0058 | 0.7673 | 0.7753 | 0.7779 | 0.7542 | 0.7797 |
757
+ | 6.8528 | 2700 | 0.001 | 0.7654 | 0.7716 | 0.7738 | 0.7535 | 0.7776 |
758
+ | 7.1066 | 2800 | 0.0071 | 0.7684 | 0.7754 | 0.7792 | 0.7518 | 0.7824 |
759
+ | 7.3604 | 2900 | 0.001 | 0.7723 | 0.7765 | 0.7814 | 0.7502 | 0.7826 |
760
+ | 7.6142 | 3000 | 0.0028 | 0.7720 | 0.7754 | 0.7807 | 0.7498 | 0.7806 |
761
+ | 7.8680 | 3100 | 0.0007 | 0.7685 | 0.7728 | 0.7773 | 0.7475 | 0.7816 |
762
+ | 8.1218 | 3200 | 0.004 | 0.7690 | 0.7741 | 0.7773 | 0.7496 | 0.7806 |
763
+ | 8.3756 | 3300 | 0.0006 | 0.7683 | 0.7723 | 0.7755 | 0.7491 | 0.7791 |
764
+ | 8.6294 | 3400 | 0.0011 | 0.7678 | 0.7724 | 0.7756 | 0.7508 | 0.7804 |
765
+ | 8.8832 | 3500 | 0.0006 | 0.7655 | 0.7721 | 0.7769 | 0.7467 | 0.7825 |
766
+ | 9.1371 | 3600 | 0.0013 | 0.7674 | 0.7751 | 0.7788 | 0.7463 | 0.7802 |
767
+ | 9.3909 | 3700 | 0.0006 | 0.7664 | 0.7741 | 0.7793 | 0.7468 | 0.7821 |
768
+ | 9.6447 | 3800 | 0.0011 | 0.7662 | 0.7753 | 0.7782 | 0.7481 | 0.7803 |
769
+ | 9.8985 | 3900 | 0.0005 | 0.7654 | 0.7738 | 0.7773 | 0.7467 | 0.7807 |
770
+
771
+
772
+ ### Framework Versions
773
+ - Python: 3.10.12
774
+ - Sentence Transformers: 3.0.1
775
+ - Transformers: 4.41.2
776
+ - PyTorch: 2.3.0+cu121
777
+ - Accelerate: 0.31.0
778
+ - Datasets: 2.19.2
779
+ - Tokenizers: 0.19.1
780
+
781
+ ## Citation
782
+
783
+ ### BibTeX
784
+
785
+ #### Sentence Transformers
786
+ ```bibtex
787
+ @inproceedings{reimers-2019-sentence-bert,
788
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
789
+ author = "Reimers, Nils and Gurevych, Iryna",
790
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
791
+ month = "11",
792
+ year = "2019",
793
+ publisher = "Association for Computational Linguistics",
794
+ url = "https://arxiv.org/abs/1908.10084",
795
+ }
796
+ ```
797
+
798
+ #### MatryoshkaLoss
799
+ ```bibtex
800
+ @misc{kusupati2024matryoshka,
801
+ title={Matryoshka Representation Learning},
802
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
803
+ year={2024},
804
+ eprint={2205.13147},
805
+ archivePrefix={arXiv},
806
+ primaryClass={cs.LG}
807
+ }
808
+ ```
809
+
810
+ #### MultipleNegativesRankingLoss
811
+ ```bibtex
812
+ @misc{henderson2017efficient,
813
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
814
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
815
+ year={2017},
816
+ eprint={1705.00652},
817
+ archivePrefix={arXiv},
818
+ primaryClass={cs.CL}
819
+ }
820
+ ```
821
+
822
+ <!--
823
+ ## Glossary
824
+
825
+ *Clearly define terms in order to be accessible across audiences.*
826
+ -->
827
+
828
+ <!--
829
+ ## Model Card Authors
830
+
831
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
832
+ -->
833
+
834
+ <!--
835
+ ## Model Card Contact
836
+
837
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
838
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04f7f8976bb617467aaf5ffcc10a86950d702b4aa8fa809cd0790988f3712ada
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff