ricardoSLabs's picture
End of training
ffb7691 verified
metadata
license: apache-2.0
base_model: LaLegumbreArtificial/Fraunhofer_Classical
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Fraunhofer_Classical_multiclass
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.761384335154827

Fraunhofer_Classical_multiclass

This model is a fine-tuned version of LaLegumbreArtificial/Fraunhofer_Classical on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1740
  • Accuracy: 0.7614

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0716 0.9976 208 0.8637 0.7752
0.0478 2.0 417 0.7157 0.8339
0.0408 2.9976 625 0.9172 0.8080
0.031 4.0 834 0.9607 0.8104
0.0258 4.9880 1040 1.1740 0.7614

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1