Fraunhofer_Classical_multiclass

This model is a fine-tuned version of LaLegumbreArtificial/Fraunhofer_Classical on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1740
  • Accuracy: 0.7614

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0716 0.9976 208 0.8637 0.7752
0.0478 2.0 417 0.7157 0.8339
0.0408 2.9976 625 0.9172 0.8080
0.031 4.0 834 0.9607 0.8104
0.0258 4.9880 1040 1.1740 0.7614

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for ricardoSLabs/Fraunhofer_Classical_multiclass

Evaluation results