redscroll's picture
redscroll/roberta-finetuned-domains
a37a0f6
|
raw
history blame
1.91 kB
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: roberta-finetuned-domains
    results: []

roberta-finetuned-domains

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5388
  • F1: 0.2879
  • Roc Auc: 0.5757
  • Accuracy: 0.2533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 768
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3789 0.97 31 0.4545 0.0004 0.4997 0.0002
0.2729 1.97 63 0.4684 0.2193 0.5479 0.1668
0.1905 2.98 95 0.5180 0.2491 0.5566 0.2100
0.1568 3.98 127 0.5263 0.2633 0.5636 0.2236
0.1398 4.98 159 0.5298 0.2862 0.5751 0.2492
0.131 5.83 186 0.5388 0.2879 0.5757 0.2533

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3